scholarly journals Discrete Dirac Operators, Critical Embeddings and Ihara-Selberg Functions

10.37236/3741 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Martin Loebl ◽  
Petr Somberg

The aim of the paper is to formulate a discrete analogue of the claim made by Alvarez-Gaume et al., realizing the partition function of the free fermion on a closed Riemann surface of genus $g$ as a linear combination of $2^{2g}$ Pfaffians of Dirac operators. Let $G=(V,E)$ be a finite graph embedded in a closed Riemann surface $X$ of genus $g$, $x_e$ the collection of independent variables associated with each edge $e$ of $G$ (collected in one vector variable $x$) and $\S$ the set of all $2^{2g}$ spin-structures on $X$.  We introduce $2^{2g}$ rotations $rot_s$ and $(2|E|\times 2|E|)$ matrices $\Delta(s)(x)$, $s\in \Sigma$, of the transitions between the oriented edges of $G$ determined by rotations $rot_s$. We show that the generating function of the even sets of edges of $G$, i.e., the Ising partition function, is a linear combination of the square roots of $2^{2g}$ Ihara-Selberg functions $I(\Delta(s)(x))$ also called Feynman functions. By a result of Foata and Zeilberger $I(\Delta(s)(x))=\det(I-\Delta'(s)(x))$, where $\Delta'(s)(x)$ is obtained from $\Delta(s)(x)$ by replacing some entries by $0$. Thus each Feynman function is computable in a polynomial time. We suggest that in the case of critical embedding of a bipartite graph $G$, the Feynman functions provide suitable discrete analogues for the Pfaffians of Dirac operators.

1992 ◽  
Vol 125 ◽  
pp. 141-150 ◽  
Author(s):  
Polly Wee Sy ◽  
Toshikazu Sunada

In this paper, we study some spectral properties of the discrete Schrödinger operator = Δ + q defined on a locally finite connected graph with an automorphism group whose orbit space is a finite graph.The discrete Laplacian and its generalization have been explored from many different viewpoints (for instance, see [2] [4]). Our paper discusses the discrete analogue of the results on the bottom of the spectrum established by T. Kobayashi, K. Ono and T. Sunada [3] in the Riemannian-manifold-setting.


1993 ◽  
Vol 04 (02) ◽  
pp. 359-365 ◽  
Author(s):  
GUOFANG WANG

We obtain the existence of harmonic maps of degree one from a closed Riemann surface of genus greater than 1 with a metric admitting a plane of symmetry to the unit 2-sphere.


1995 ◽  
Vol 118 (2) ◽  
pp. 321-340 ◽  
Author(s):  
Abdallah Lyzzaik

AbstractLet be an open Riemann surface with finite genus and finite number of boundary components, and let be a closed Riemann surface. An open continuous function from to is termed a (p, q)-map, 0 < q < p, if it has a finite number of branch points and assumes every point in either p or q times, counting multiplicity, with possibly a finite number of exceptions. These comprise the most general class of all non-trivial functions having two valences between and .The object of this paper is to study the geometry of (p, q)-maps and establish a generalized embedding theorem which asserts that the image surfaces of (p, q)-maps embed in p-fold closed coverings possibly having branch points off the image surfaces.


2010 ◽  
Vol 21 (04) ◽  
pp. 475-495 ◽  
Author(s):  
YUXIANG LI ◽  
YOUDE WANG

Let f be a positive smooth function on a closed Riemann surface (M, g). The f-energy of a map u from M to a Riemannian manifold (N, h) is defined as [Formula: see text] and its L2-gradient is: [Formula: see text] We will study the blow-up properties of some approximate f-harmonic map sequences in this paper. For a sequence uk : M → N with ‖τf(uk)‖L2 < C1 and Ef(uk) < C2, we will show that, if the sequence is not compact, then it must blow-up at some critical points of f or some concentrate points of |τf(uk)|2dVg. For a minimizing α-f-harmonic map sequence in some homotopy class of maps from M into N we show that, if the sequence is not compact, the blow-up points must be the minimal point of f and the energy identity holds true.


Sign in / Sign up

Export Citation Format

Share Document