A Note on Coloring Vertex-Transitive Graphs
Keyword(s):
We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\}$, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin–Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.
2014 ◽
Vol 157
(1)
◽
pp. 45-61
2009 ◽
Vol 3
(2)
◽
pp. 386-394
◽
1994 ◽
Vol 56
(1)
◽
pp. 53-63
◽
1975 ◽
Vol 20
(3)
◽
pp. 377-384
◽
2019 ◽
Vol 11
(05)
◽
pp. 1930002
2012 ◽
Vol 87
(3)
◽
pp. 441-447
◽
Keyword(s):