scholarly journals Backward Jeu de Taquin Slides for Composition Tableaux and a Noncommutative Pieri Rule

10.37236/4976 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Vasu Tewari

We give a backward jeu de taquin slide analogue on semistandard reverse composition tableaux. These tableaux were first studied by Haglund, Luoto, Mason and van Willigenburg when defining quasisymmetric Schur functions. Our algorithm for performing backward jeu de taquin slides on semistandard reverse composition tableaux results in a natural operator on compositions that we call the jdt operator. This operator in turn gives rise to a new poset structure on compositions whose maximal chains we enumerate. As an application, we also give a noncommutative Pieri rule for noncommutative Schur functions that uses the jdt operators.


2011 ◽  
Vol 226 (5) ◽  
pp. 4492-4532 ◽  
Author(s):  
C. Bessenrodt ◽  
K. Luoto ◽  
S. van Willigenburg


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Vasu Tewari ◽  
Stephanie van Willigenburg

International audience We define a $0$-Hecke action on composition tableaux, and then use it to derive $0$-Hecke modules whose quasisymmetric characteristic is a quasisymmetric Schur function. We then relate the modules to the weak Bruhat order and use them to derive a new basis for quasisymmetric functions. We also classify those modules that are tableau-cyclic and likewise indecomposable. Finally, we develop a restriction rule that reflects the coproduct of quasisymmetric Schur functions. Nous définissons une action $0$-Hecke sur les tableaux de composition, et ensuite nous l’utilisons pour dériver les modules $0$-Hecke dont la caractéristique quasi-symétrique est une fonction de Schur quasi-symétrique. Nous mettons les modules en relation avec l’ordre de Bruhat faible et les utilisons pour dériver une nouvelle base pour les fonctions quasi-symétriques. Nous classons aussi ces modules qui sont tableau-cycliques et aussi indécomposable. Enfin, nous développons une règle de restriction qui reflète le coproduit des fonctions de Schur quasi-symétriques.



2013 ◽  
Vol 17 (2) ◽  
pp. 275-294
Author(s):  
C. Bessenrodt ◽  
S. van Willigenburg






2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
James Haglund ◽  
Sarah Mason ◽  
Kurt Luoto ◽  
Steph van Willigenburg

International audience We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions. Nous étudions une nouvelle base des fonctions quasisymétriques, les fonctions de quasiSchur. Ces fonctions sont obtenues en spécialisant les fonctions de Macdonald dissymétrique. Nous décrivons les compositions que donne une simple fonction quasisymétriques. Nous décrivons aussi une règle par certaines fonctions de Schur.



1998 ◽  
Vol 193 (1-3) ◽  
pp. 179-200 ◽  
Author(s):  
Sergey Fomin ◽  
Curtis Greene


2015 ◽  
Vol 42 (3) ◽  
pp. 763-791 ◽  
Author(s):  
Sarah K. Mason ◽  
Elizabeth Niese


Author(s):  
Kurt Luoto ◽  
Stefan Mykytiuk ◽  
Stephanie van Willigenburg


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Sarah K Mason ◽  
Jeffrey Remmel

International audience Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the $\textit{quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the $\textit{row-strict quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through row-strict tableaux. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships. Haglund, Luoto, Mason, et van Willigenburg ont introduit une base pour les fonctions quasi-symétriques appelée $\textit{base des fonctions de Schur quasi-symétriques}$, qui sont construites en remplissant des diagrammes de compositions, d'une manière très semblable à la construction des fonctions de Schur à partir des tableaux "column-strict'' (ordre strict sur les colonnes). Nous introduisons une nouvelle base pour les fonctions quasi-symétriques appelée $\textit{base des fonctions de Schur quasi-symétriques "row-strict''}$, qui sont construites en remplissant des diagrammes de compositions, d'une manière très semblable à la construction des fonctions de Schur à partir des tableaux "row-strict'' (ordre strict sur les lignes). Nous décrivons la relation entre cette nouvelle base et d'autres bases connues pour les fonctions quasi-symétriques, ainsi que ses relations avec les polynômes de Schur. Nous obtenons un raffinement de l'opérateur oméga comme conséquence de ces relations.



Sign in / Sign up

Export Citation Format

Share Document