scholarly journals Face-Degree Bounds for Planar Critical Graphs

10.37236/5895 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Ligang Jin ◽  
Yingli Kang ◽  
Eckhard Steffen

The only remaining case of a well known conjecture of Vizing states that there is no planar graph with maximum degree 6 and edge chromatic number 7. We introduce parameters for planar graphs,  based on the degrees of the faces, and study the question whether there are upper bounds for these parameters for planar edge-chromatic critical graphs. Our results provide upper bounds on these parameters for smallest counterexamples to Vizing's conjecture, thus providing a partial characterization of such graphs, if they exist.For $k \leq 5$ the results give insights into the structure of planar edge-chromatic critical graphs.

2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


10.37236/3303 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Chang ◽  
Jian-Liang Wu ◽  
Hui-Juan Wang ◽  
Zhan-Hai Guo

The total chromatic number of a graph $G$, denoted by $\chi′′(G)$, is the minimum number of colors needed to color the vertices and edges of $G$ such that no two adjacent or incident elements get the same color. It is known that if a planar graph $G$ has maximum degree $\Delta ≥ 9$, then $\chi′′(G) = \Delta + 1$. The join $K_1 \vee P_n$ of $K_1$ and $P_n$ is called a fan graph $F_n$. In this paper, we prove that if $G$ is a $F_5$-free planar graph with maximum degree 8, then $\chi′′(G) = 9$.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Xin Zhang ◽  
Guizhen Liu

AbstractIf a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ℈Δ/2⌊ if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


10.37236/2589 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

In this paper, we prove that every planar graph of maximum degree six without 7-cycles is class one.


Author(s):  
Mehmet Akif Yetim

We provide upper bounds on the chromatic number of the square of graphs, which have vertex ordering characterizations. We prove that [Formula: see text] is [Formula: see text]-colorable when [Formula: see text] is a cocomparability graph, [Formula: see text]-colorable when [Formula: see text] is a strongly orderable graph and [Formula: see text]-colorable when [Formula: see text] is a dually chordal graph, where [Formula: see text] is the maximum degree and [Formula: see text] = max[Formula: see text] is the multiplicity of the graph [Formula: see text]. This improves the currently known upper bounds on the chromatic number of squares of graphs from these classes.


1996 ◽  
Vol 5 (3) ◽  
pp. 227-245 ◽  
Author(s):  
Bradley S. Gubser

Kuratowski's Theorem, perhaps the most famous result in graph theory, states that K5 and K3,3 are the only non-planar graphs for which both G\e, the deletion of the edge e, and G/e, the contraction of the edge e, are planar for all edges e of G. We characterize the almost-planar graphs, those non-planar graphs for which G\e or G/e is planar for all edges e of G. This paper gives two characterizations of the almost-planar graphs: an explicit description of the structure of almost-planar graphs; and an excluded minor criterion. We also give a best possible bound on the number of edges of an almost-planar graph.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Yan Li ◽  
Xin Zhang

An outer-1-planar graph is a graph admitting a drawing in the plane so that all vertices appear in the outer region of the drawing and every edge crosses at most one other edge. This paper establishes the local structure of outer-1-planar graphs by proving that each outer-1-planar graph contains one of the seventeen fixed configurations, and the list of those configurations is minimal in the sense that for each fixed configuration there exist outer-1-planar graphs containing this configuration that do not contain any of another sixteen configurations. There are two interesting applications of this structural theorem. First of all, we conclude that every (resp. maximal) outer-1-planar graph of minimum degree at least 2 has an edge with the sum of the degrees of its two end-vertices being at most 9 (resp. 7), and this upper bound is sharp. On the other hand, we show that the list 3-dynamic chromatic number of every outer-1-planar graph is at most 6, and this upper bound is best possible.


10.37236/6408 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Heather Smith ◽  
László Székely ◽  
Hua Wang ◽  
Shuai Yuan

We determine the maximum distance between any two of the center, centroid, and subtree core among trees with a given order. Corresponding results are obtained for trees with given maximum degree and also for trees with given diameter. The problem of the maximum distance between the centroid and the subtree core among trees with given order and diameter becomes difficult. It can be solved in terms of the problem of minimizing the number of root-containing subtrees in a rooted tree of given order and height. While the latter problem remains unsolved, we provide a partial characterization of the extremal structure.


10.37236/3509 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Montassier ◽  
P. Ochem

A graph $G$ is $(d_1,...,d_l)$-colorable if the vertex set of $G$ can be partitioned into subsets $V_1,\ldots ,V_l$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq l$. In this paper, we focus on complexity aspects of such colorings when $l=2,3$. More precisely, we prove that, for any fixed integers $k,j,g$ with $(k,j) \neq (0,0)$ and $g\geq3$, either every planar graph with girth at least $g$ is $(k,j)$-colorable or it is NP-complete to determine whether a planar graph with girth at least $g$ is $(k,j)$-colorable. Also, for any fixed integer $k$, it is NP-complete to determine whether a planar graph that is either $(0,0,0)$-colorable or non-$(k,k,1)$-colorable is $(0,0,0)$-colorable. Additionally, we exhibit non-$(3,1)$-colorable planar graphs with girth 5 and non-$(2,0)$-colorable planar graphs with girth 7. 


Sign in / Sign up

Export Citation Format

Share Document