scholarly journals Self-Avoiding Walks and Amenability

10.37236/6577 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Geoffrey Grimmett ◽  
Zhongyang Li

The connective constant $\mu(G)$ of an infinite transitive graph $G$ is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work.Various properties of connective constants depend on the existence of so-called 'unimodular graph height functions', namely: (i) whether $\mu(G)$ is a local function on certain graphs derived from $G$, (ii) the equality of $\mu(G)$ and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating $\mu(G)$ to a given degree of accuracy.In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable (and, more generally, virtually indicable) groups support unimodular graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function.In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of Benjamini, Nachmias, and Peres, it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group.The emphasis of the work is upon the structure of Cayley graphs, rather than upon the algebraic properties of the underlying groups. New methods are needed since a Cayley graph generally possesses automorphisms beyond those arising through the action of the group.

Author(s):  
Brendan D. McKay ◽  
Cheryl E. Praeger

AbstractThe Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


Author(s):  
PABLO SPIGA

AbstractIn this paper, we prove that the maximal order of a semiregular element in the automorphism group of a cubic vertex-transitive graph Γ does not tend to infinity as the number of vertices of Γ tends to infinity. This gives a solution (in the negative) to a conjecture of Peter Cameron, John Sheehan and the author [4, conjecture 2].However, with an application of the positive solution of the restricted Burnside problem, we show that this conjecture holds true when Γ is either a Cayley graph or an arc-transitive graph.


10.37236/3915 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Jin-Xin Zhou ◽  
Yan-Quan Feng

A bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two orbits of equal size. In this paper, we give a characterization of cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular $p$-group, where $p>5$ is an odd prime. As an application, a classification of cubic non-Cayley vertex-transitive graphs of order $2p^3$ is given for each prime $p$.


2017 ◽  
Vol 67 (1) ◽  
Author(s):  
Shoufeng Wang

AbstractIt is well known that Cayley graphs of groups are automatically vertex-transitive. A pioneer result of Kelarev and Praeger implies that Cayley graphs of semigroups can be regarded as a source of possibly new vertex-transitive graphs. In this note, we consider the following problem: Is every vertex-transitive Cayley graph of a semigroup isomorphic to a Cayley graph of a group? With the help of the results of Kelarev and Praeger, we show that the vertex-transitive, connected and undirected finite Cayley graphs of semigroups are isomorphic to Cayley graphs of groups, and all finite vertex-transitive Cayley graphs of inverse semigroups are isomorphic to Cayley graphs of groups. Furthermore, some related problems are proposed.


Author(s):  
Léonard Tschanz

AbstractWe study the Steklov problem on a subgraph with boundary $$(\Omega ,B)$$ ( Ω , B ) of a polynomial growth Cayley graph $$\Gamma$$ Γ . For $$(\Omega _l, B_l)_{l=1}^\infty$$ ( Ω l , B l ) l = 1 ∞ a sequence of subgraphs of $$\Gamma$$ Γ such that $$|\Omega _l| \longrightarrow \infty$$ | Ω l | ⟶ ∞ , we prove that for each $$k \in {\mathbb {N}}$$ k ∈ N , the kth eigenvalue tends to 0 proportionally to $$1/|B|^{\frac{1}{d-1}}$$ 1 / | B | 1 d - 1 , where d represents the growth rate of $$\Gamma$$ Γ . The method consists in associating a manifold M to $$\Gamma$$ Γ and a bounded domain $$N \subset M$$ N ⊂ M to a subgraph $$(\Omega , B)$$ ( Ω , B ) of $$\Gamma$$ Γ . We find upper bounds for the Steklov spectrum of N and transfer these bounds to $$(\Omega , B)$$ ( Ω , B ) by discretizing N and using comparison theorems.


10.37236/2087 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Jin-Xin Zhou ◽  
Yan-Quan Feng

A graph is vertex-transitive if its automorphism group acts transitively on its vertices. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this paper, the cubic vertex-transitive non-Cayley graphs of order $8p$ are classified for each prime $p$. It follows from this classification that there are two sporadic and two infinite families of such graphs, of which the sporadic ones have order $56$,  one infinite family exists for every prime $p>3$ and the other family exists if and only if $p\equiv 1\mod 4$. For each family there is a unique graph for a given order.


2019 ◽  
Vol 11 (05) ◽  
pp. 1930002
Author(s):  
G. H. J. Lanel ◽  
H. K. Pallage ◽  
J. K. Ratnayake ◽  
S. Thevasha ◽  
B. A. K. Welihinda

Lovász had posed a question stating whether every connected, vertex-transitive graph has a Hamilton path in 1969. There is a growing interest in solving this longstanding problem and still it remains widely open. In fact, it was known that only five vertex-transitive graphs exist without a Hamiltonian cycle which do not belong to Cayley graphs. A Cayley graph is the subclass of vertex-transitive graph, and in view of the Lovász conjecture, the attention has focused more toward the Hamiltonicity of Cayley graphs. This survey will describe the current status of the search for Hamiltonian cycles and paths in Cayley graphs and digraphs on different groups, and discuss the future direction regarding famous conjecture.


10.37236/7888 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Matthias Hamann

We prove that the first homology group of every planar locally finite transitive graph $G$ is finitely generated as an $\Aut(G)$-module and we prove a similar result for the fundamental group of locally finite planar Cayley graphs. Corollaries of these results include Droms's theorem that planar groups are finitely presented and Dunwoody's theorem that planar locally finite transitive graphs are accessible. 


Author(s):  
Agelos Georgakopoulos ◽  
Alex Wendland

AbstractWe generalise the standard constructions of a Cayley graph in terms of a group presentation by allowing some vertices to obey different relators than others. The resulting notion of presentation allows us to represent every vertex-transitive graph.


Sign in / Sign up

Export Citation Format

Share Document