scholarly journals More Turán-Type Theorems for Triangles in Convex Point Sets

10.37236/7224 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Boris Aronov ◽  
Vida Dujmović ◽  
Pat Morin ◽  
Aurélien Ooms ◽  
Luı́s Fernando Schultz Xavier da Silveira

 We study the following family of problems: Given a set of $n$ points in convex position, what is the maximum number triangles one can create having these points as vertices while avoiding certain sets of forbidden configurations.  As forbidden configurations we consider all 8 ways in which a pair of triangles in such a point set can interact.  This leads to 256 extremal Turán-type questions. We give nearly tight (within a $\log n$ factor) bounds for 248 of these questions and show that the remaining 8 questions are all asymptotically equivalent to Stein's longstanding tripod packing problem.


2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.



10.37236/2356 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Adrian Dumitrescu ◽  
János Pach ◽  
Géza Tóth

Let $n \geq 4$ be even. It is shown that every set $S$ of $n$ points in the plane can be connected by a (possibly self-intersecting) spanning tour (Hamiltonian cycle) consisting of $n$ straight-line edges such that the angle between any two consecutive edges is at most $2\pi/3$. For $n=4$ and $6$, this statement is tight. It is also shown that every even-element point set $S$ can be partitioned  into at most two subsets, $S_1$ and $S_2$, each admitting a spanning tour with no angle larger than $\pi/2$. Fekete and Woeginger conjectured that for sufficiently large even $n$, every $n$-element set admits such a spanning tour. We confirm this conjecture for point sets in convex position. A much stronger result holds for large point sets randomly and uniformly selected from an open region bounded by finitely many rectifiable curves: for any $\epsilon>0$, these sets almost surely admit a spanning tour with no angle larger than $\epsilon$.



Author(s):  
Michael Kaufmann ◽  
Tamara Mchedlidze ◽  
Antonios Symvonis
Keyword(s):  


2019 ◽  
Vol 29 (04) ◽  
pp. 301-306
Author(s):  
Danny Rorabaugh

A planar point set is in convex position precisely when it has a convex polygonization, that is, a polygonization with maximum interior angle measure at most [Formula: see text]. We can thus talk about the convexity of a set of points in terms of its min-max interior angle measure. The main result presented here is a nontrivial upper bound of the min-max value in terms of the number of points in the set. Motivated by a particular construction, we also pose a natural conjecture for the best upper bound.



2020 ◽  
Vol 21 (1) ◽  
pp. 87 ◽  
Author(s):  
Laurence Boxer ◽  
P. Christopher Staecker

<p>In this paper, we examine some properties of the fixed point set of a digitally continuous function. The digital setting requires new methods that are not analogous to those of classical topological fixed point theory, and we obtain results that often differ greatly from standard results in classical topology.</p><p>We introduce several measures related to fixed points for continuous self-maps on digital images, and study their properties. Perhaps the most important of these is the fixed point spectrum F(X) of a digital image: that is, the set of all numbers that can appear as the number of fixed points for some continuous self-map. We give a complete computation of F(C<sub>n</sub>) where C<sub>n</sub> is the digital cycle of n points. For other digital images, we show that, if X has at least 4 points, then F(X) always contains the numbers 0, 1, 2, 3, and the cardinality of X. We give several examples, including C<sub>n</sub>, in which F(X) does not equal {0, 1, . . . , #X}.</p><p>We examine how fixed point sets are affected by rigidity, retraction, deformation retraction, and the formation of wedges and Cartesian products. We also study how fixed point sets in digital images can be arranged; e.g., for some digital images the fixed point set is always connected.</p>



2006 ◽  
Vol 306 (15) ◽  
pp. 1791-1797 ◽  
Author(s):  
C. Merino ◽  
G. Salazar ◽  
J. Urrutia
Keyword(s):  


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyun Wang ◽  
Xianquan Zhang

Point pattern matching is an important topic of computer vision and pattern recognition. In this paper, we propose a point pattern matching algorithm for two planar point sets under Euclidean transform. We view a point set as a complete graph, establish the relation between the point set and the complete graph, and solve the point pattern matching problem by finding congruent complete graphs. Experiments are conducted to show the effectiveness and robustness of the proposed algorithm.





1998 ◽  
Vol 20 (3) ◽  
pp. 307-331 ◽  
Author(s):  
T. Akutsu ◽  
H. Tamaki ◽  
T. Tokuyama
Keyword(s):  


2010 ◽  
Vol 81 (2) ◽  
pp. 298-303 ◽  
Author(s):  
TORU IKEDA

AbstractA link L in S3 possibly admits an involution of the exterior E(L) with fixed point set a closed surface, which is not extendable to an involution of S3. In this paper, we focus on the case of graph links and show that the genus of the surface provides a lower estimate of the number of link components.



Sign in / Sign up

Export Citation Format

Share Document