scholarly journals $4$-Colouring of Generalized Signed Planar Graphs

10.37236/9338 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Yiting Jiang ◽  
Xuding Zhu

Assume $G$ is a graph and $S$ is a set of permutations of positive integers. An $S$-signature of $G$ is a pair $(D, \sigma)$, where $D$ is an orientation of $G$ and $\sigma: E(D) \to S$ is a mapping which assigns to each arc $e=(u,v)$ a permutation $\sigma(e)$ in $S$. We say $G$ is $S$-$k$-colourable if for any $S$-signature $(D, \sigma)$ of $G$, there is a mapping $f: V(G) \to [k]$ such that for each arc $e=(u,v)$ of $G$, $\sigma(e)(f(u)) \ne f(v)$. The concept of $S$-$k$-colourable is a common generalization of many colouring concepts. This paper studies the problem as to which subsets $S$ of $S_4$, every  planar graph is $S$-$4$-colourable. We call such a subset $S$ of $S_4$ a good subset. The Four Colour Theorem is equivalent to saying that $S=\{id\}$ is good. It was proved by Jin, Wong and Zhu (arXiv:1811.08584) that a subset $S$ containing $id$ is good if and only if $S=\{id\}$. In this paper, we prove that, up to conjugation, every good subset of $S_4$ not containing $id$ is a subset of $\{(12),(34),(12)(34)\}$.

10.37236/6738 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Hojin Choi ◽  
Young Soo Kwon

In this paper, we introduce a new variation of list-colorings. For a graph $G$  and for a given nonnegative integer $t$, a $t$-common list assignment of $G$ is a mapping $L$ which assigns each vertex $v$ a set $L(v)$ of colors such that given set of $t$ colors belong to $L(v)$ for every $v\in V(G)$. The $t$-common list chromatic number of $G$ denoted by $ch_t(G)$ is defined as the minimum positive integer $k$ such that there exists an $L$-coloring of $G$ for every $t$-common list assignment $L$ of $G$, satisfying $|L(v)| \ge k$ for every vertex $v\in V(G)$. We show that for all positive integers $k, \ell$ with $2 \le k \le \ell$ and for any positive integers $i_1 , i_2, \ldots, i_{k-2}$ with $k \le i_{k-2} \le \cdots \le i_1 \le \ell$, there exists a graph $G$ such that $\chi(G)= k$, $ch(G) =  \ell$ and $ch_t(G) = i_t$ for every $t=1, \ldots, k-2$. Moreover, we consider the $t$-common list chromatic number of planar graphs. From the four color theorem and the result of Thomassen (1994), for any $t=1$ or $2$, the sharp upper bound of $t$-common list chromatic number of planar graphs is $4$ or $5$. Our first step on $t$-common list chromatic number of planar graphs is to find such a sharp upper bound. By constructing a planar graph $G$ such that $ch_1(G) =5$, we show that the sharp upper bound for $1$-common list chromatic number of planar graphs is $5$. The sharp upper bound of $2$-common list chromatic number of planar graphs is still open. We also suggest several questions related to $t$-common list chromatic number of planar graphs.


1996 ◽  
Vol 05 (06) ◽  
pp. 877-883 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
TATSUYA TSUKAMOTO

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2, n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


10.37236/2589 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

In this paper, we prove that every planar graph of maximum degree six without 7-cycles is class one.


10.37236/5309 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

The 4 Color Theorem (4CT) implies that every $n$-vertex planar graph has an independent set of size at least $\frac{n}4$; this is best possible, as shown by the disjoint union of many copies of $K_4$.  In 1968, Erdős asked whether this bound on independence number could be proved more easily than the full 4CT. In 1976 Albertson showed (independently of the 4CT) that every $n$-vertex planar graph has an independent set of size at least $\frac{2n}9$. Until now, this remained the best bound independent of the 4CT. Our main result improves this bound to $\frac{3n}{13}$.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2011 ◽  
Vol 50-51 ◽  
pp. 245-248
Author(s):  
Na Na Li ◽  
Shu Jun Wang ◽  
Xian Rui Meng
Keyword(s):  

In 1994, C.Thomassen proved that every planar graph is (namely ). In 1993, M.Voigt shown that there are planar graphs which are not . But no one know whether every planar graph is . In this paper, we give a important property on planar graph that “Every planar graph is ” and “Every planar graph is free ” are equivalent.


2020 ◽  
Vol 40 (4) ◽  
pp. 1121-1135
Author(s):  
Debarun Ghosh ◽  
Ervin Győri ◽  
Addisu Paulos ◽  
Nika Salia ◽  
Oscar Zamora

Abstract The Wiener index of a connected graph is the sum of the distances between all pairs of vertices in the graph. It was conjectured that the Wiener index of an n-vertex maximal planar graph is at most $$\lfloor \frac{1}{18}(n^3+3n^2)\rfloor $$ ⌊ 1 18 ( n 3 + 3 n 2 ) ⌋ . We prove this conjecture and determine the unique n-vertex maximal planar graph attaining this maximum, for every $$ n\ge 10$$ n ≥ 10 .


2013 ◽  
Vol 23 (04n05) ◽  
pp. 357-395 ◽  
Author(s):  
THERESE BIEDL ◽  
MARTIN VATSHELLE

In this paper, we study the point-set embeddability problem, i.e., given a planar graph and a set of points, is there a mapping of the vertices to the points such that the resulting straight-line drawing is planar? It was known that this problem is NP-hard if the embedding can be chosen, but becomes polynomial for triangulated graphs of treewidth 3. We show here that in fact it can be answered for all planar graphs with a fixed combinatorial embedding that have constant treewidth and constant face-degree. We prove that as soon as one of the conditions is dropped (i.e., either the treewidth is unbounded or some faces have large degrees), point-set embeddability with a fixed embedding becomes NP-hard. The NP-hardness holds even for a 3-connected planar graph with constant treewidth, triangulated planar graphs, or 2-connected outer-planar graphs. These results also show that the convex point-set embeddability problem (where faces must be convex) is NP-hard, but we prove that it becomes polynomial if the graph has bounded treewidth and bounded maximum degree.


2000 ◽  
Vol 09 (08) ◽  
pp. 975-986 ◽  
Author(s):  
RUI PEDRO CARPENTIER

In [4] Kauffman and Vogel constructed a rigid vertex regular isotopy invariant for unoriented four-valent graphs embedded in three dimensional space. It assigns to each embedded graph G a polynomial, denoted [G], in three variables, A, B and a, satisfying the skein relations: [Formula: see text] and is defined in terms of a state-sum and the Dubrovnik polynomial for links. Using the graphical calculus of [4] it is shown that the polynomial of a planar graph can be calculated recursively from that of planar graphs with less vertices, which also allows the polynomial of an embedded graph to be calculated without resorting to links. The same approach is used to give a direct proof of uniqueness of the (normalized) polynomial restricted to planar graphs. In the case B=A-1 and a=A, it is proved that for a planar graph G we have [G]=2c-1(-A-A-1)v, where c is the number of connected components of G and v is the number of vertices of G. As a corollary, a necessary, but not sufficient, condition is obtained for an embedded graph to be ambient isotopic to a planar graph. In an appendix it is shown that, given a polynomial for planar graphs satisfying the graphical calculus, and imposing the first skein relation above, the polynomial extends to a rigid vertex regular isotopy invariant for embedded graphs, satisfying the remaining skein relations. Thus, when existence of the planar polynomial is guaranteed, this provides a direct way, not depending on results for the Dubrovnik polynomial, to show consistency of the polynomial for embedded graphs.


Sign in / Sign up

Export Citation Format

Share Document