scholarly journals The maximum Wiener index of maximal planar graphs

2020 ◽  
Vol 40 (4) ◽  
pp. 1121-1135
Author(s):  
Debarun Ghosh ◽  
Ervin Győri ◽  
Addisu Paulos ◽  
Nika Salia ◽  
Oscar Zamora

Abstract The Wiener index of a connected graph is the sum of the distances between all pairs of vertices in the graph. It was conjectured that the Wiener index of an n-vertex maximal planar graph is at most $$\lfloor \frac{1}{18}(n^3+3n^2)\rfloor $$ ⌊ 1 18 ( n 3 + 3 n 2 ) ⌋ . We prove this conjecture and determine the unique n-vertex maximal planar graph attaining this maximum, for every $$ n\ge 10$$ n ≥ 10 .

d'CARTESIAN ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 103
Author(s):  
Arthur Wulur ◽  
Benny Pinontoan ◽  
Mans Mananohas

A graph G consists of non-empty set of vertex/vertices (also called node/nodes) and the set of lines connecting two vertices called edge/edges. The vertex set of a graph G is denoted by V(G) and the edge set is denoted by E(G). A Rectilinear Monotone r-Regular Planar Graph is a simple connected graph that consists of vertices with same degree and horizontal or diagonal straight edges without vertical edges and edges crossing. This research shows that there are infinite family of rectilinear monotone r-regular planar graphs for r = 3and r = 4. For r = 5, there are two drawings of rectilinear monotone r-regular planar graphs with 12 vertices and 16 vertices. Keywords: Monotone Drawings, Planar Graphs, Rectilinear Graphs, Regular Graphs


2020 ◽  
Vol 3 (2) ◽  
pp. 70
Author(s):  
Emily L Casinillo ◽  
Leomarich F Casinillo

<p>Let G=(V(G), E(G)) be a connected graph where V(G) is a finite nonempty set called vertex-set of G, and  E(G) is a set of unordered pairs {u, v} of distinct elements from  V(G) called the edge-set of G. If  is a connected acyclic graph or a connected graph with no cycles, then it is called a tree graph. A binary tree Tl with l levels is complete if all levels except possibly the last are completely full, and the last level has all its nodes to the left side. If we form a path on each level of a full and complete binary tree, then the graph is now called full and complete binary planar graph and it is denoted as Bn, where n is the level of the graph. This paper introduced a new planar graph which is derived from binary tree graphs. In addition, a combinatorial formula for counting its vertices, faces, and edges that depends on the level of the graph was developed.</p>


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


1996 ◽  
Vol 05 (06) ◽  
pp. 877-883 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
TATSUYA TSUKAMOTO

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2, n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


10.37236/2589 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

In this paper, we prove that every planar graph of maximum degree six without 7-cycles is class one.


10.37236/5309 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

The 4 Color Theorem (4CT) implies that every $n$-vertex planar graph has an independent set of size at least $\frac{n}4$; this is best possible, as shown by the disjoint union of many copies of $K_4$.  In 1968, Erdős asked whether this bound on independence number could be proved more easily than the full 4CT. In 1976 Albertson showed (independently of the 4CT) that every $n$-vertex planar graph has an independent set of size at least $\frac{2n}9$. Until now, this remained the best bound independent of the 4CT. Our main result improves this bound to $\frac{3n}{13}$.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


Author(s):  
Hossein Hojabri ◽  
Elnaz Miandoabchi

The weighted maximal planar graph (WMPG) appears in many applications. It is currently used to design facilities layout in manufacturing plants. Given an edge-weighted complete simple graph G, the WMPG involves finding a sub-graph of G that is planar in the sense that it could be embedded on the plane such that none of its edges intersect, and is maximal in the sense that no more edges can be added to it unless its planarity is violated. Finally, it is optimal in the sense that the resulting maximal planar graph holds the maximum sum of edge weights. In this chapter, the aim is to explain the application of planarity in facility layout design. The mathematical models and the algorithms developed for the problem so far are explained. In the meanwhile, the corollaries and theorems needed to explain the algorithms and models are briefly given. In the last part, an explanation on how to draw block layout from the adjacency graph is given.


Author(s):  
Hanyuan Deng ◽  
G. C. Keerthi Vasan ◽  
S. Balachandran

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances between all pairs of vertices of [Formula: see text]. A connected graph [Formula: see text] is said to be a cactus if each of its blocks is either a cycle or an edge. Let [Formula: see text] be the set of all [Formula: see text]-vertex cacti containing exactly [Formula: see text] cycles. Liu and Lu (2007) determined the unique graph in [Formula: see text] with the minimum Wiener index. Gutman, Li and Wei (2017) determined the unique graph in [Formula: see text] with maximum Wiener index. In this paper, we present the second-minimum Wiener index of graphs in [Formula: see text] and identify the corresponding extremal graphs, which solve partially the problem proposed by Gutman et al. [Cacti with [Formula: see text]-vertices and [Formula: see text] cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017) 189–200] in 2017.


Sign in / Sign up

Export Citation Format

Share Document