spatial graph
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 46)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Chengming Liu ◽  
Ronghua Fu ◽  
Yinghao Li ◽  
Yufei Gao ◽  
Lei Shi ◽  
...  

In this paper, we propose a new method for detecting abnormal human behavior based on skeleton features using self-attention augment graph convolution. The skeleton data have been proved to be robust to the complex background, illumination changes, and dynamic camera scenes and are naturally constructed as a graph in non-Euclidean space. Particularly, the establishment of spatial temporal graph convolutional networks (ST-GCN) can effectively learn the spatio-temporal relationships of Non-Euclidean Structure Data. However, it only operates on local neighborhood nodes and thereby lacks global information. We propose a novel spatial temporal self-attention augmented graph convolutional networks (SAA-Graph) by combining improved spatial graph convolution operator with a modified transformer self-attention operator to capture both local and global information of the joints. The spatial self-attention augmented module is used to understand the intra-frame relationships between human body parts. As far as we know, we are the first group to utilize self-attention for video anomaly detection tasks by enhancing spatial temporal graph convolution. Moreover, to validate the proposed model, we performed extensive experiments on two large-scale publicly standard datasets (i.e., ShanghaiTech Campus and CUHK Avenue datasets) which reveal the state-of-art performance for our proposed approach when compared to existing skeleton-based methods and graph convolution methods.


2021 ◽  
Vol 11 (24) ◽  
pp. 11637
Author(s):  
Yashaswi Karnati ◽  
Rahul Sengupta ◽  
Sanjay Ranka

Microscopic simulation-based approaches are extensively used for determining good signal timing plans on traffic intersections. Measures of Effectiveness (MOEs) such as wait time, throughput, fuel consumption, emission, and delays can be derived for variable signal timing parameters, traffic flow patterns, etc. However, these techniques are computationally intensive, especially when the number of signal timing scenarios to be simulated are large. In this paper, we propose InterTwin, a Deep Neural Network architecture based on Spatial Graph Convolution and Encoder-Decoder Recurrent networks that can predict the MOEs efficiently and accurately for a wide variety of signal timing and traffic patterns. Our methods can generate probability distributions of MOEs and are not limited to mean and standard deviation. Additionally, GPU implementations using InterTwin can derive MOEs, at least four to five orders of magnitude faster than microscopic simulations on a conventional 32 core CPU machine.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuangjia Zheng ◽  
Zengrong Lei ◽  
Haitao Ai ◽  
Hongming Chen ◽  
Daiguo Deng ◽  
...  

AbstractScaffold hopping is a central task of modern medicinal chemistry for rational drug design, which aims to design molecules of novel scaffolds sharing similar target biological activities toward known hit molecules. Traditionally, scaffolding hopping depends on searching databases of available compounds that can't exploit vast chemical space. In this study, we have re-formulated this task as a supervised molecule-to-molecule translation to generate hopped molecules novel in 2D structure but similar in 3D structure, as inspired by the fact that candidate compounds bind with their targets through 3D conformations. To efficiently train the model, we curated over 50 thousand pairs of molecules with increased bioactivity, similar 3D structure, but different 2D structure from public bioactivity database, which spanned 40 kinases commonly investigated by medicinal chemists. Moreover, we have designed a multimodal molecular transformer architecture by integrating molecular 3D conformer through a spatial graph neural network and protein sequence information through Transformer. The trained DeepHop model was shown able to generate around 70% molecules having improved bioactivity together with high 3D similarity but low 2D scaffold similarity to the template molecules. This ratio was 1.9 times higher than other state-of-the-art deep learning methods and rule- and virtual screening-based methods. Furthermore, we demonstrated that the model could generalize to new target proteins through fine-tuning with a small set of active compounds. Case studies have also shown the advantages and usefulness of DeepHop in practical scaffold hopping scenarios.


2021 ◽  
Author(s):  
Ekaterina Tolstaya ◽  
James Paulos ◽  
Vijay Kumar ◽  
Alejandro Ribeiro

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2198
Author(s):  
Chaoyue Li ◽  
Lian Zou ◽  
Cien Fan ◽  
Hao Jiang ◽  
Yifeng Liu

Graph convolutional networks (GCNs), which model human actions as a series of spatial-temporal graphs, have recently achieved superior performance in skeleton-based action recognition. However, the existing methods mostly use the physical connections of joints to construct a spatial graph, resulting in limited topological information of the human skeleton. In addition, the action features in the time domain have not been fully explored. To better extract spatial-temporal features, we propose a multi-stage attention-enhanced sparse graph convolutional network (MS-ASGCN) for skeleton-based action recognition. To capture more abundant joint dependencies, we propose a new strategy for constructing skeleton graphs. This simulates bidirectional information flows between neighboring joints and pays greater attention to the information transmission between sparse joints. In addition, a part attention mechanism is proposed to learn the weight of each part and enhance the part-level feature learning. We introduce multiple streams of different stages and merge them in specific layers of the network to further improve the performance of the model. Our model is finally verified on two large-scale datasets, namely NTU-RGB+D and Skeleton-Kinetics. Experiments demonstrate that the proposed MS-ASGCN outperformed the previous state-of-the-art methods on both datasets.


2021 ◽  
Author(s):  
Satya R. T. Peddada ◽  
Nathan M. Dunfield ◽  
Lawrence E. Zeidner ◽  
Kai A. James ◽  
James T. Allison

Abstract Systematic enumeration and identification of unique 3D spatial topologies of complex engineering systems such as automotive cooling layouts, hybrid-electric power trains, and aero-engines are essential to search their exhaustive design spaces to identify spatial topologies that can satisfy challenging system requirements. However, efficient navigation through discrete 3D spatial topology options is a very challenging problem due to its combinatorial nature and can quickly exceed human cognitive abilities at even moderate complexity levels. Here we present a new, efficient, and generic design framework that utilizes mathematical spatial graph theory to represent, enumerate, and identify distinctive 3D topological classes for an abstract engineering system, given its system architecture (SA) — its components and interconnections. Spatial graph diagrams (SGDs) are generated for a given SA from zero to a specified maximum crossing number. Corresponding Yamada polynomials for all the planar SGDs are then generated. SGDs are categorized into topological classes, each of which shares a unique Yamada polynomial. Finally, for each topological class, one 3D geometric model is generated for an SGD with the fewest interconnect crossings. Several case studies are shown to illustrate the different features of our proposed framework. Design guidelines are also provided for practicing engineers to aid the utilization of this framework for application to different types of real-world problems.


Author(s):  
Yanan Wu ◽  
He Liu ◽  
Songhe Feng ◽  
Yi Jin ◽  
Gengyu Lyu ◽  
...  

Multi-Label Image Classification (MLIC) aims to predict a set of labels that present in an image. The key to deal with such problem is to mine the associations between image contents and labels, and further obtain the correct assignments between images and their labels. In this paper, we treat each image as a bag of instances, and reformulate the task of MLIC as a instance-label matching selection problem. To model such problem, we propose a novel deep learning framework named Graph Matching based Multi-Label Image Classification (GM-MLIC), where Graph Matching (GM) scheme is introduced owing to its excellent capability of excavating the instance and label relationship. Specifically, we first construct an instance spatial graph and a label semantic graph respectively, and then incorporate them into a constructed assignment graph by connecting each instance to all labels. Subsequently, the graph network block is adopted to aggregate and update all nodes and edges state on the assignment graph to form structured representations for each instance and label. Our network finally derives a prediction score for each instance-label correspondence and optimizes such correspondence with a weighted cross-entropy loss. Extensive experiments conducted on various datasets demonstrate the superiority of our proposed method.


2021 ◽  
Author(s):  
Huifan Wan ◽  
Guanghui Pan ◽  
Yu Chen ◽  
Danni Ding ◽  
Maoyang Zou

Sign in / Sign up

Export Citation Format

Share Document