scholarly journals Extension of Gyárfás-Sumner Conjecture to Digraphs

10.37236/9906 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Pierre Aboulker ◽  
Pierre Charbit ◽  
Reza Naserasr

The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices  in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has become the focus of numerous works. In this work we look at possible extensions of the Gyárfás-Sumner conjecture. In particular, we conjecture a simple characterization  of sets $\mathcal F$ of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induced subdigraph.  Among notable results, we prove that oriented $K_4$-free graphs without a directed path of length $3$ have bounded dichromatic number where a bound of $414$ is provided. We also show that an orientation of a complete multipartite graph with no directed triangle is $2$-colorable. To prove these results we introduce the notion of nice sets that might be of independent interest.

10.37236/2407 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Michael Cavers ◽  
Karen Seyffarth

The distinguishing chromatic number $\chi_D(G)$ of a graph $G$ is the minimum number of colours required to properly colour the vertices of $G$ so that the only automorphism of $G$ that preserves colours is the identity. For a graph $G$ of order $n$, it is clear that $1\leq\chi_D(G)\leq n$, and it has been shown that $\chi_D(G)=n$ if and only if $G$ is a complete multipartite graph. This paper characterizes the graphs $G$ of order $n$ satisfying $\chi_D(G)=n-1$ or $\chi_D(G)=n-2$.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 764
Author(s):  
Yaser Rowshan ◽  
Mostafa Gholami ◽  
Stanford Shateyi

For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550060
Author(s):  
P. Seneviratne

Permutation decoding method developed by MacWilliams and described in [Permutation decoding of systematic codes, Bell Syst. Tech. J. 43 (1964) 485–505] is a decoding technique that uses a subset of the automorphism group of the code called a PD-set. The complexity of the permutation decoding algorithm depends on the size of the PD-set and finding a minimal PD-set for an error correcting code is a hard problem. In this paper we examine binary codes from the complete-multipartite graph [Formula: see text] and find PD-sets for all values of [Formula: see text] and [Formula: see text]. Further we show that these PD-sets are minimal when [Formula: see text] is odd and [Formula: see text].


2020 ◽  
Vol 36 (36) ◽  
pp. 309-317
Author(s):  
Haiying Shan ◽  
Changxiang He ◽  
Zhensheng Yu

The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the graph. Akbari et al. [S. Akbari, E. Ghorbani, and M. Oboudi. Edge addition, singular values, and energy of graphs and matrices. {\em Linear Algebra Appl.}, 430:2192--2199, 2009.] proved that for a complete multipartite graph $K_{t_1 ,\ldots,t_k}$, if $t_i\geq 2 \ (i=1,\ldots,k)$, then deleting any edge will increase the energy. A natural question is how the energy changes when $\min\{t_1 ,\ldots,t_k\}=1$. In this paper, a new method to study the energy of graph is explored. As an application of this new method, the above natural question is answered and it is completely determined how the energy of a complete multipartite graph changes when one edge is removed.


2019 ◽  
Vol 28 (3) ◽  
pp. 224-260
Author(s):  
Andrea Burgess ◽  
Francesca Merola ◽  
Tommaso Traetta

Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


Sign in / Sign up

Export Citation Format

Share Document