monochromatic copy
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 2)

Order ◽  
2021 ◽  
Author(s):  
Fei-Huang Chang ◽  
Dániel Gerbner ◽  
Wei-Tian Li ◽  
Abhishek Methuku ◽  
Dániel T. Nagy ◽  
...  

AbstractWe address the following rainbow Ramsey problem: For posets P, Q what is the smallest number n such that any coloring of the elements of the Boolean lattice Bn either admits a monochromatic copy of P or a rainbow copy of Q. We consider both weak and strong (non-induced and induced) versions of this problem.


Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Mikhail Lavrov ◽  
Xujun Liu

Abstract A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph $K_n$ arrows a small graph H, then every ‘dense’ subgraph of $K_n$ also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if $n = 3t+r$ where $r \in \{0,1,2\}$ and G is an n-vertex graph with $\delta(G) \ge (3n-1)/4$ , then for every 2-edge-colouring of G, either there are cycles of every length $\{3, 4, 5, \dots, 2t+r\}$ of the same colour, or there are cycles of every even length $\{4, 6, 8, \dots, 2t+2\}$ of the samecolour. Our result is tight in the sense that no longer cycles (of length $>2t+r$ ) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every $(3t-1)$ -vertex graph G with minimum degree larger than $3|V(G)|/4$ arrows the path $P_{2n}$ with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for $n=3t+r$ where $r \in \{0,1,2\}$ and every n-vertex graph G with $\delta(G) \ge 3n/4$ , in each 2-edge-colouring of G there exists a monochromatic cycle of length at least $2t+r$ .


Author(s):  
Dennis Clemens ◽  
Meysam Miralaei ◽  
Damian Reding ◽  
Mathias Schacht ◽  
Anusch Taraz

Abstract The size-Ramsey number of a graph F is the smallest number of edges in a graph G with the Ramsey property for F, that is, with the property that any 2-colouring of the edges of G contains a monochromatic copy of F. We prove that the size-Ramsey number of the grid graph on n × n vertices is bounded from above by n3+o(1).


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 764
Author(s):  
Yaser Rowshan ◽  
Mostafa Gholami ◽  
Stanford Shateyi

For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.


10.37236/8857 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Zi-Xia Song ◽  
Jingmei Zhang

Given an integer $r\geqslant 1$ and graphs $G, H_1, \ldots, H_r$, we write $G \rightarrow ({H}_1, \ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $i\in\{1, \ldots, r\}$. A non-complete graph $G$ is $(H_1, \ldots, H_r)$-co-critical if $G \nrightarrow ({H}_1, \ldots, {H}_r)$, but $G+e\rightarrow ({H}_1, \ldots, {H}_r)$ for every edge $e$ in $\overline{G}$. In this paper, motivated by Hanson and Toft's conjecture [Edge-colored saturated graphs, J Graph Theory 11(1987), 191–196], we study the minimum number of edges over all $(K_t, \mathcal{T}_k)$-co-critical graphs on $n$ vertices, where $\mathcal{T}_k$ denotes the family of all trees on $k$ vertices. Following Day [Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017), 201–207], we apply graph bootstrap percolation on a not necessarily $K_t$-saturated graph to prove that for all $t\geqslant4 $ and $k\geqslant\max\{6, t\}$, there exists a constant $c(t, k)$ such that, for all $n \ge (t-1)(k-1)+1$, if $G$ is a $(K_t, \mathcal{T}_k)$-co-critical graph on $n$ vertices, then $$ e(G)\geqslant \left(\frac{4t-9}{2}+\frac{1}{2}\left\lceil \frac{k}{2} \right\rceil\right)n-c(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $t\in\{4,5\}$ and $k\geqslant6$. The method we develop in this paper may shed some light on attacking Hanson and Toft's conjecture.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrey Kupavskii ◽  
Arsenii Sagdeev

Abstract For two metric spaces $\mathbb X$ and $\mathcal Y$ the chromatic number $\chi ({{\mathbb X}};{{\mathcal{Y}}})$ of $\mathbb X$ with forbidden $\mathcal Y$ is the smallest k such that there is a colouring of the points of $\mathbb X$ with k colors that contains no monochromatic copy of $\mathcal Y$ . In this article, we show that for each finite metric space $\mathcal {M}$ that contains at least two points the value $\chi \left ({{\mathbb R}}^n_\infty; \mathcal M \right )$ grows exponentially with n. We also provide explicit lower and upper bounds for some special $\mathcal M$ .


10.37236/9292 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Jie Ma ◽  
Tianyun Tang ◽  
Xingxing Yu

For integers $n\ge 0$, an iterated triangulation $\mathrm{Tr}(n)$ is defined recursively as follows: $\mathrm{Tr}(0)$ is the plane triangulation on three vertices and, for $n\ge 1$, $\mathrm{Tr}(n)$ is the plane triangulation obtained from the plane triangulation $\mathrm{Tr}(n-1)$ by, for each inner face $F$ of $\mathrm{Tr}(n-1)$, adding inside $F$ a new vertex and three edges joining this new vertex to the three vertices incident with $F$. In this paper, we show that there exists a 2-edge-coloring of $\mathrm{Tr}(n)$ such that $\mathrm{Tr}(n)$ contains no monochromatic copy of the cycle $C_k$ for any $k\ge 5$. As a consequence, the answer to one of two questions asked by Axenovich et al. is negative. We also determine the radius 2 graphs $H$ for which there exists $n$ such that every 2-edge-coloring of $\mathrm{Tr}(n)$ contains a monochromatic copy of $H$, extending a result of Axenovich et al. for radius 2 trees.


2020 ◽  
Vol 29 (4) ◽  
pp. 537-554
Author(s):  
Dennis Clemens ◽  
Anita Liebenau ◽  
Damian Reding

AbstractFor an integer q ⩾ 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H yet no proper subgraph of G has this property, then G is called q-Ramsey-minimal for H. Generalizing a statement by Burr, Nešetřil and Rödl from 1977, we prove that, for q ⩾ 3, if G is a graph that is not q-Ramsey for some graph H, then G is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H as long as H is 3-connected or isomorphic to the triangle. For such H, the following are some consequences.For 2 ⩽ r < q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H.For every q ⩾ 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree, genus and chromatic number.The collection $\{\mathcal M_q(H) \colon H \text{ is 3-connected or } K_3\}$ forms an antichain with respect to the subset relation, where $\mathcal M_q(H)$ denotes the set of all graphs that are q-Ramsey-minimal for H.We also address the question of which pairs of graphs satisfy $\mathcal M_q(H_1)=\mathcal M_q(H_2)$ , in which case H1 and H2 are called q-equivalent. We show that two graphs H1 and H2 are q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some q ⩾ 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: results by Nešetřil and Rödl and by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.


10.37236/7816 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Martin Balko ◽  
Josef Cibulka ◽  
Karel Král ◽  
Jan Kynčl

An ordered graph is a pair $\mathcal{G}=(G,\prec)$ where $G$ is a graph and $\prec$ is a total ordering of its vertices. The ordered Ramsey number $\overline{R}(\mathcal{G})$ is the minimum number $N$ such that every ordered complete graph with $N$ vertices and with edges colored by two colors contains a monochromatic copy of $\mathcal{G}$. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings $\mathcal{M}_n$ on $n$ vertices for which $\overline{R}(\mathcal{M}_n)$ is superpolynomial in $n$. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number $\overline{R}(\mathcal{G})$ is polynomial in the number of vertices of $\mathcal{G}$ if the bandwidth of $\mathcal{G}$ is constant or if $\mathcal{G}$ is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by Károlyi, Pach, Tóth, and Valtr.


2019 ◽  
Vol 29 (3) ◽  
pp. 318-345
Author(s):  
Matija Bucić ◽  
Sven Heberle ◽  
Shoham Letzter ◽  
Benny Sudakov

AbstractWe prove that, with high probability, in every 2-edge-colouring of the random tournament on n vertices there is a monochromatic copy of every oriented tree of order $O(n{\rm{/}}\sqrt {{\rm{log}} \ n} )$. This generalizes a result of the first, third and fourth authors, who proved the same statement for paths, and is tight up to a constant factor.


Sign in / Sign up

Export Citation Format

Share Document