dichromatic number
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 12)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Vol 153 ◽  
pp. 1-30
Author(s):  
Lior Gishboliner ◽  
Raphael Steiner ◽  
Tibor Szabó
Keyword(s):  

Author(s):  
Maria Axenovich ◽  
António Girão ◽  
Richard Snyder ◽  
Lea Weber

Abstract Kostochka and Thomason independently showed that any graph with average degree $\Omega(r\sqrt{\log r})$ contains a $K_r$ minor. In particular, any graph with chromatic number $\Omega(r\sqrt{\log r})$ contains a $K_r$ minor, a partial result towards Hadwiger’s famous conjecture. In this paper, we investigate analogues of these results in the directed setting. There are several ways to define a minor in a digraph. One natural way is as follows. A strong $\overrightarrow{K}_{\!\!r}$ minor is a digraph whose vertex set is partitioned into r parts such that each part induces a strongly connected subdigraph, and there is at least one edge in each direction between any two distinct parts. We investigate bounds on the dichromatic number and minimum out-degree of a digraph that force the existence of strong $\overrightarrow{K}_{\!\!r}$ minors as subdigraphs. In particular, we show that any tournament with dichromatic number at least 2r contains a strong $\overrightarrow{K}_{\!\!r}$ minor, and any tournament with minimum out-degree $\Omega(r\sqrt{\log r})$ also contains a strong $\overrightarrow{K}_{\!\!r}$ minor. The latter result is tight up to the implied constant and may be viewed as a strong-minor analogue to the classical result of Kostochka and Thomason. Lastly, we show that there is no function $f\;:\;\mathbb{N} \rightarrow \mathbb{N}$ such that any digraph with minimum out-degree at least f(r) contains a strong $\overrightarrow{K}_{\!\!r}$ minor, but such a function exists when considering dichromatic number.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Michael Anastos ◽  
Ander Lamaison ◽  
Raphael Steiner ◽  
Tibor Szabó

A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority $4$-coloring and conjectured that every digraph admits a majority $3$-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most $6$ or dichromatic number at most $3$, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most $4$. The benchmark case of $r$-regular digraphs remains open for $r \in [5,143]$. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-$3$-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority $(2+\varepsilon)$-coloring.


10.37236/9906 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Pierre Aboulker ◽  
Pierre Charbit ◽  
Reza Naserasr

The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices  in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has become the focus of numerous works. In this work we look at possible extensions of the Gyárfás-Sumner conjecture. In particular, we conjecture a simple characterization  of sets $\mathcal F$ of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induced subdigraph.  Among notable results, we prove that oriented $K_4$-free graphs without a directed path of length $3$ have bounded dichromatic number where a bound of $414$ is provided. We also show that an orientation of a complete multipartite graph with no directed triangle is $2$-colorable. To prove these results we introduce the notion of nice sets that might be of independent interest.


2021 ◽  
pp. 181-187
Author(s):  
Pierre Aboulker ◽  
Frédéric Havet ◽  
Kolja Knauer ◽  
Clément Rambaud
Keyword(s):  

2020 ◽  
Vol 90 ◽  
pp. 103196
Author(s):  
Paul Ellis ◽  
Attila Joó ◽  
Dániel T. Soukup
Keyword(s):  

10.37236/8752 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Stefan Felsner ◽  
Winfried Hochstättler ◽  
Kolja Knauer ◽  
Raphael Steiner

We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.


10.37236/8942 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Jørgen Bang-Jensen ◽  
Thomas Bellitto ◽  
Thomas Schweser ◽  
Michael Stiebitz

The dichromatic number $\overrightarrow{\chi}(D)$ of a digraph $D$ is the minimum number of colors needed to color the vertices of $D$ such that each color class induces an acyclic subdigraph of $D$. A digraph $D$ is $k$-critical if $\overrightarrow{\chi}(D) = k$ but $\overrightarrow{\chi}(D') < k$ for all proper subdigraphs $D'$ of $D$. We examine methods for creating infinite families of critical digraphs, the Dirac join and the directed and bidirected Hajós join. We prove that a digraph $D$ has dichromatic number at least $k$ if and only if it contains a subdigraph that can be obtained from bidirected complete graphs on $k$ vertices by directed Hajós joins and identifying non-adjacent vertices. Building upon that, we show that a digraph $D$ has dichromatic number at least $k$ if and only if it can be constructed from bidirected $K_k$'s by using directed and bidirected Hajós joins and identifying non-adjacent vertices (so called Ore joins), thereby transferring a well-known result of Urquhart to digraphs. Finally, we prove a Gallai-type theorem that characterizes the structure of the low vertex subdigraph of a critical digraph, that is, the subdigraph, which is induced by the vertices that have in-degree $k-1$ and out-degree $k-1$ in $D$.


10.37236/6521 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Pierre Aboulker ◽  
Nathann Cohen ◽  
Frédéric Havet ◽  
William Lochet ◽  
Phablo F. S. Moura ◽  
...  

In 1985, Mader conjectured the existence of a function $f$ such that every digraph with minimum out-degree at least $f(k)$ contains a subdivision of the transitive tournament of order $k$. This conjecture is still completely open, as the existence of $f(5)$ remains unknown. In this paper, we show that if $D$ is an oriented path, or an in-arborescence (i.e., a tree with all edges oriented towards the root) or the union of two directed paths from $x$ to $y$ and a directed path from $y$ to $x$, then every digraph with minimum out-degree large enough contains a subdivision of $D$. Additionally, we study Mader's conjecture considering another graph parameter. The dichromatic number of a digraph $D$ is the smallest integer $k$ such that $D$ can be partitioned into $k$ acyclic subdigraphs. We show that any digraph with dichromatic number greater than $4^m (n-1)$ contains every digraph with $n$ vertices and $m$ arcs as a subdivision. We show that any digraph with dichromatic number greater than $4^m (n-1)$ contains every digraph with $n$ vertices and $m$ arcs as a subdivision.


Sign in / Sign up

Export Citation Format

Share Document