acyclic digraph
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Gurami Tsitsiashvili ◽  
Victor Bulgakov

The following two optimization problems on acyclic digraph analysis are solved. The first of them consists of determining the minimum (in terms of volume) set of arcs, the removal of which from an acyclic digraph breaks all paths passing through a subset of its vertices. The second problem is to determine the smallest set of arcs, the introduction of which into an acyclic digraph turns it into a strongly connected one. The first problem was solved by reduction to the problem of the maximum flow and the minimum section. The second challenge was solved by calculating the minimum number of input arcs and determining the smallest set of input arcs in terms of the minimum arc coverage of an acyclic digraph. The solution of these problems extends to an arbitrary digraph by isolating the components of cyclic equivalence in it and the arcs between them.


10.37236/9906 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Pierre Aboulker ◽  
Pierre Charbit ◽  
Reza Naserasr

The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices  in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has become the focus of numerous works. In this work we look at possible extensions of the Gyárfás-Sumner conjecture. In particular, we conjecture a simple characterization  of sets $\mathcal F$ of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induced subdigraph.  Among notable results, we prove that oriented $K_4$-free graphs without a directed path of length $3$ have bounded dichromatic number where a bound of $414$ is provided. We also show that an orientation of a complete multipartite graph with no directed triangle is $2$-colorable. To prove these results we introduce the notion of nice sets that might be of independent interest.


2020 ◽  
Vol 2 (3) ◽  
pp. 209-228
Author(s):  
Axel Parmentier ◽  
Victor Cohen ◽  
Vincent Leclère ◽  
Guillaume Obozinski ◽  
Joseph Salmon

Influence diagrams (ID) and limited memory influence diagrams (LIMID) are flexible tools to represent discrete stochastic optimization problems, with the Markov decision process (MDP) and partially observable MDP as standard examples. More precisely, given random variables considered as vertices of an acyclic digraph, a probabilistic graphical model defines a joint distribution via the conditional distributions of vertices given their parents. In an ID, the random variables are represented by a probabilistic graphical model whose vertices are partitioned into three types: chance, decision, and utility vertices. The user chooses the distribution of the decision vertices conditionally to their parents in order to maximize the expected utility. Leveraging the notion of rooted junction tree, we present a mixed integer linear formulation for solving an ID, as well as valid inequalities, which lead to a computationally efficient algorithm. We also show that the linear relaxation yields an optimal integer solution for instances that can be solved by the “single policy update,” the default algorithm for addressing IDs.


2020 ◽  
Vol 27 (01) ◽  
pp. 79-86
Author(s):  
Yanzhen Xiong ◽  
Soesoe Zaw ◽  
Yinfeng Zhu

Let D be a digraph. The competition graph of D is the graph having the same vertex set with D and having an edge joining two different vertices if and only if they have at least one common out-neighbor in D. The phylogeny graph of D is the competition graph of the digraph constructed from D by adding loops at all vertices. The competition/phylogeny number of a graph is the least number of vertices to be added to make the graph a competition/phylogeny graph of an acyclic digraph. In this paper, we show that for any integer k there is a connected graph such that its phylogeny number minus its competition number is greater than k. We get similar results for hypergraphs.


Author(s):  
Abdulkarim Magomedov ◽  
S.A. Lawrencenko

In some cases, the formalisation of the puzzle in terms of graph theory allows us to solve the puzzle by finding a path in a connected acyclic digraph. We follow the approach taken in Ore's book on graph theory. In the present paper we demonstrate the approach on problems of different origins. In each case, the problem is restated in terms of a connected acyclic digraph whose nodes are certain states and whose directed arcs are transitions between states; then it is shown how to reduce the problem to finding a directed path between the nodes of the constructed digraph.


Author(s):  
Kostandinos Tsaramirsis ◽  
Georgios Tsaramirsis ◽  
Fazal Qudus Khan ◽  
Awais Ahmad ◽  
Alaa Omar Khadidos ◽  
...  

Algorithms for measuring semantic similarity between Gene Ontology (GO) terms has become a popular area of research in bioinformatics as it can help to detect functional associations between genes and potential impact to the health and well-being of humans, animals, and plants. While the focus of the research is on the design and improvement of GO semantic similarity algorithms, there is still a need for implementation of such algorithms before they can be used to solve actual biological problems. This can be challenging given that the potential users usually come from a biology background and they are not programmers. A number of implementations exist for some well-established algorithms but these implementations are not generic enough to support any algorithm other than the ones they are designed for. The aim of this paper is to shift the focus away from implementation, allowing researchers to focus on algorithm’s design and execution rather than implementation. This is achieved by an implementation approach capable of understanding and executing user defined GO semantic similarity algorithms. Questions and answers were used for the definition of the user defined algorithm. Additionally, this approach understands any direct acyclic digraph in an Open Biomedical Ontologies (OBO)-like format and its annotations. On the other hand, software developers of similar applications can also benefit by using this as a template for their applications.


Algorithms ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 87 ◽  
Author(s):  
Frank Gurski ◽  
Dominique Komander ◽  
Carolin Rehs

Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G = ( V , A ) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows that finding the chromatic number of an oriented graph is an NP-hard problem, too. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


10.37236/2387 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Türker Bıyıkoğlu ◽  
Yusuf Civan

We call a vertex $x$ of a graph $G=(V,E)$ a codominated vertex if $N_G[y]\subseteq N_G[x]$ for some vertex $y\in V\backslash \{x\}$, and a graph $G$ is called codismantlable if either it is an edgeless graph or it contains a codominated vertex $x$ such that $G-x$ is codismantlable. We show that $(C_4,C_5)$-free vertex-decomposable graphs are codismantlable, and prove that if $G$ is a $(C_4,C_5,C_7)$-free well-covered graph, then vertex-decomposability, codismantlability and Cohen-Macaulayness for $G$ are all equivalent. These results complement and unify many of the earlier results on bipartite, chordal and very well-covered graphs. We also study the Castelnuovo-Mumford regularity $reg(G)$ of such graphs, and show that $reg(G)=im(G)$ whenever $G$ is a $(C_4,C_5)$-free vertex-decomposable graph, where $im(G)$ is the induced matching number of $G$. Furthermore, we prove that $H$ must be a codismantlable graph if $im(H)=reg(H)=m(H)$, where $m(H)$ is the matching number of $H$. We further describe an operation on digraphs that creates a vertex-decomposable and codismantlable graph from any acyclic digraph. By way of application, we provide an infinite family $H_n$ ($n\geq 4$) of sequentially Cohen-Macaulay graphs whose vertex cover numbers are half of their orders, while containing no vertex of degree-one such that they are vertex-decomposable, and $reg(H_n)=im(H_n)$ if $n\geq 6$. This answers a recent question of Mahmoudi et al.


Sign in / Sign up

Export Citation Format

Share Document