Further Research on the Exhaustive-Service M/M/1 Queueing Model with Single Vacations

2013 ◽  
Vol 15 (3) ◽  
pp. 193
Author(s):  
Sadik Qimengul ◽  
Gupur Geni
Keyword(s):  
2012 ◽  
Vol 2 (1) ◽  
pp. 109 ◽  
Author(s):  
T. S. R Murthy ◽  
Sivarama Krishna ◽  
G. V. S Raju
Keyword(s):  

Author(s):  
Neal Master ◽  
Marty I. Reiman ◽  
Can Wang ◽  
Lawrence M. Wein

1997 ◽  
Author(s):  
Hong Chen ◽  
Yiyuan Zhao ◽  
Hong Chen ◽  
Yiyuan Zhao

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


Author(s):  
Weina Wang ◽  
Qiaomin Xie ◽  
Mor Harchol-Balter

Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-server-per-job model: an arrival might not "fit'' into the available servers and might have to queue, blocking later arrivals and leaving servers idle. From a queueing perspective, almost nothing is understood about multi-server job queueing systems; even understanding the exact stability region is a very hard problem. In this paper, we investigate a multi-server job queueing model under scaling regimes where the number of servers in the system grows. Specifically, we consider a system with multiple classes of jobs, where jobs from different classes can request different numbers of servers and have different service time distributions, and jobs are served in first-come-first-served order. The multi-server job model opens up new scaling regimes where both the number of servers that a job needs and the system load scale with the total number of servers. Within these scaling regimes, we derive the first results on stability, queueing probability, and the transient analysis of the number of jobs in the system for each class. In particular we derive sufficient conditions for zero queueing. Our analysis introduces a novel way of extracting information from the Lyapunov drift, which can be applicable to a broader scope of problems in queueing systems.


Sign in / Sign up

Export Citation Format

Share Document