High-resolution processing of acoustic well logs based on anti-aliasing Shannon wavelet packet transform

2009 ◽  
Vol 2009 (5) ◽  
pp. 63-68 ◽  
Author(s):  
Wei Zang ◽  
Yibing Shi ◽  
Tao Lu
Author(s):  
Asma Abdolahpoor ◽  
Peyman Kabiri

Image fusion is an important concept in remote sensing. Earth observation satellites provide both high-resolution panchromatic and low-resolution multispectral images. Pansharpening is aimed on fusion of a low-resolution multispectral image with a high-resolution panchromatic image. Because of this fusion, a multispectral image with high spatial and spectral resolution is generated. This paper reports a new method to improve spatial resolution of the final multispectral image. The reported work proposes an image fusion method using wavelet packet transform (WPT) and principal component analysis (PCA) methods based on the textures of the panchromatic image. Initially, adaptive PCA (APCA) is applied to both multispectral and panchromatic images. Consequently, WPT is used to decompose the first principal component of multispectral and panchromatic images. Using WPT, high frequency details of both panchromatic and multispectral images are extracted. In areas with similar texture, extracted spatial details from the panchromatic image are injected into the multispectral image. Experimental results show that the proposed method can provide promising results in fusing multispectral images with high-spatial resolution panchromatic image. Moreover, results show that the proposed method can successfully improve spectral features of the multispectral image.


2017 ◽  
Vol 229 (3) ◽  
pp. 1275-1295 ◽  
Author(s):  
N. Jamia ◽  
P. Rajendran ◽  
S. El-Borgi ◽  
M. I. Friswell

2007 ◽  
Vol 46 (15) ◽  
pp. 5152-5158 ◽  
Author(s):  
J. Jay Liu ◽  
Daeyoun Kim ◽  
Chonghun Han

Author(s):  
PARUL SHAH ◽  
S. N. MERCHANT ◽  
U. B. DESAI

This paper presents two methods for fusion of infrared (IR) and visible surveillance images. The first method combines Curvelet Transform (CT) with Discrete Wavelet Transform (DWT). As wavelets do not represent long edges well while curvelets are challenged with small features, our objective is to combine both to achieve better performance. The second approach uses Discrete Wavelet Packet Transform (DWPT), which provides multiresolution in high frequency band as well and hence helps in handling edges better. The performance of the proposed methods have been extensively tested for a number of multimodal surveillance images and compared with various existing transform domain fusion methods. Experimental results show that evaluation based on entropy, gradient, contrast etc., the criteria normally used, are not enough, as in some cases, these criteria are not consistent with the visual quality. It also demonstrates that the Petrovic and Xydeas image fusion metric is a more appropriate criterion for fusion of IR and visible images, as in all the tested fused images, visual quality agrees with the Petrovic and Xydeas metric evaluation. The analysis shows that there is significant increase in the quality of fused image, both visually and quantitatively. The major achievement of the proposed fusion methods is its reduced artifacts, one of the most desired feature for fusion used in surveillance applications.


Sign in / Sign up

Export Citation Format

Share Document