Using Advanced Time Domain Function And Interpolation In Frequency Domain Algorithm Based On The Shannon Wavelet Packet Transform To Measurement The Nonstationary Harmonics

Author(s):  
Bian Hailong ◽  
Chen Guangju
2021 ◽  
Vol 3 (1) ◽  
pp. 031-036
Author(s):  
S. A. GOROVOY ◽  
◽  
V. I. SKOROKHODOV ◽  
D. I. PLOTNIKOV ◽  
◽  
...  

This paper deals with the analysis of interharmonics, which are due to the presence of a nonlinear load. The tool for the analysis was a mathematical apparatus - wavelet packet transform. Which has a number of advantages over the traditional Fourier transform. A simulation model was developed in Simulink to simulate a non-stationary non-sinusoidal mode. The use of the wavelet packet transform will allow to determine the mode parameters with high accuracy from the obtained wavelet coefficients. It also makes it possible to obtain information, both in the frequency domain of the signal and in the time domain.


Author(s):  
Hiroshi Toda ◽  
Zhong Zhang ◽  
Takashi Imamura

The theorems giving the conditions for discrete wavelet transforms (DWTs) to achieve perfect translation invariance (PTI) have already been proven, and based on these theorems, the dual-tree complex DWT and the complex wavelet packet transform, achieving PTI, have already been proposed. However, there is not so much flexibility in their wavelet density. In the frequency domain, the wavelet density is fixed by octave filter banks, and in the time domain, each wavelet is arrayed on a fixed coordinate, and the wavelet packet density in the frequency domain can be only designed by dividing an octave frequency band equally in linear scale, and its density in the time domain is constrained by the division number of an octave frequency band. In this paper, a novel complex DWT is proposed to create variable wavelet density in the frequency and time domains, that is, an octave frequency band can be divided into N filter banks in logarithmic scale, where N is an integer larger than or equal to 3, and in the time domain, a distance between wavelets can be varied in each level, and its transform achieves PTI.


Author(s):  
Dongfang Song ◽  
Guanfei Yin

Traditional automatic characteristic extraction technology of engine vibration signals for hybrid electric vehicles (HEV) only focuses on the analysis of engine vibration signals in time domain and frequency domain. Single time domain analysis or single frequency domain analysis cannot accurately analyse the vibration signals, while both time domain analysis and frequency domain analysis have cross-analysis. As a result, the analysis results are repetitive and conflicting, which makes it difficult to extract the characteristics of engine vibration signals. The final extraction accuracy is not high and the extraction efficiency is low. For this reason, an automatic characteristic extraction technology of HEV engine vibration signal based on wavelet packet energy analysis is proposed. Firstly, the mechanical vibration of engine is converted into corresponding voltage and current signals by various sensors and then converted into digital signals by A/D (analog/digital) conditioner. The data of vibration signals are often mixed with various noises, which have a great impact on the final analysis of vibration signals. Data interception and pre-filtering are adopted. Wave, zero-mean, elimination of trend term and elimination of staggered points are used to pre-treat the vibration signals with mixed noise. Short-Time Fourier Transform (STFT) algorithm is introduced to analyse the pre-processed engine vibration signals and the fundamental properties of the non-stationary vibration signals in actual operation of the engine are obtained. The energy distribution of the analysed engine vibration signal is calculated by the wavelet packet energy analysis method. The calculated parameters of the energy distribution of the wavelet packet are taken as the characteristic parameters of the vibration signal. The vibration signal characteristics of the engine are automatically extracted. The experiment is carried out in the form of comparison with the traditional method. The experimental results show that the time-frequency joint analysis applied in the proposed technology can accurately analyse the essential characteristics of the engine vibration signal of HEV. The wavelet packet energy analysis method can ensure the extraction accuracy of the engine vibration signal characteristics.


2021 ◽  
Author(s):  
Hongqiang Li ◽  
Zhixuan An ◽  
Shasha Zuo ◽  
Wei Zhu ◽  
Lu Cao ◽  
...  

Abstract Background: Electrocardiogram (ECG) indicates the occurrence of various cardiac diseases, and the accurate classification of ECG signals is important for the automatic diagnosis of arrhythmia. Methods: This paper presents a novel classification method based on multifeatures by combining waveform morphology and frequency-domain statistical analysis, which offer a better classification accuracy and minimise the time spent for classifying signals. A wavelet packet is used to decompose a de-noised ECG signal, and the singular value, maximum value and standard deviation of the decomposed wavelet packet coefficients are calculated to obtain the frequency domain feature space. The slope threshold method is applied to detect R peak and calculate RR intervals, and the first two RR intervals are extracted as time-domain features. The fusion feature space is composed of time-domain and frequency-domain features. Results: A combination of support vector machine (SVM) with the help of grid search and waveform morphological analysis is applied to complete nine types of ECG signal classification. Computer simulations show that the accuracy of the proposed algorithm on multiple types of arrhythmia databases can reach 96.67%.Conclusions: The proposed approach classified the arrhythmias of ECG signals with promising results. The experimental results reveal that classification accuracy can reach 96.67% when the penalty factor C is 9.1896, and the kernel function parameter g is 0.10882.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


Sign in / Sign up

Export Citation Format

Share Document