ON SOME ASPECTS OF VECTOR MEASURES

2022 ◽  
Vol 11 (1) ◽  
pp. 17-23
Author(s):  
S.O. Hazoume ◽  
Y. Mensah

This paper addresses some properties of vector measures (Banach space valued measures) as well as topological results on some spaces of vector measures of bounded variation.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Piotr Mikusiński ◽  
John Paul Ward

AbstractIf \left( {{\mu _n}} \right)_{n = 1}^\infty are positive measures on a measurable space (X, Σ) and \left( {{v_n}} \right)_{n = 1}^\infty are elements of a Banach space 𝔼 such that \sum\nolimits_{n = 1}^\infty {\left\| {{v_n}} \right\|{\mu _n}\left( X \right)} < \infty, then \omega \left( S \right) = \sum\nolimits_{n = 1}^\infty {{v_n}{\mu _n}\left( S \right)} defines a vector measure of bounded variation on (X, Σ). We show 𝔼 has the Radon-Nikodym property if and only if every 𝔼-valued measure of bounded variation on (X, Σ) is of this form. This characterization of the Radon-Nikodym property leads to a new proof of the Lewis-Stegall theorem.We also use this result to show that under natural conditions an operator defined on positive measures has a unique extension to an operator defined on 𝔼-valued measures for any Banach space 𝔼 that has the Radon-Nikodym property.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 268 ◽  
Author(s):  
Kuddusi Kayaduman ◽  
Fevzi Yaşar

In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean on the sequence spaces f0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space and and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their α­, β­, γ­duals, and characterized their matrix transformations on this space and into this space.


1968 ◽  
Vol 20 ◽  
pp. 1246-1255 ◽  
Author(s):  
Geoffrey Fox

Let μ be a vector measure (countably additive set function with values in a Banach space) on a field. If μ is of bounded variation, it extends to a vector measure on the generated σ-field (2; 5; 8). Arsene and Strătilă (1) have obtained a result, which when specialized somewhat in form and context, reads as follows: “A vector measure on a field, majorized in norm by a positive, finite, subadditive increasing set function defined on the generated σ-field, extends to a vector measure on the generated σ-field”.


Author(s):  
Joseph Kupka

The setting is a compact Hausfroff space ω. The notion of a Walls class of subsets of Ω is defined via strange axioms—axioms whose justification rests with examples such as the collection of regular open sets or the range of a strong lifting. Avarient of Rosenthal' famous lwmma which applies directly to Banach space-valued measures is esablished, and it is used to obtain, in elementary fashion, the following two uniform boundedness principles: (1)The Nikodym Boundedness Theorem. If K is a family of regular Borel vector measures on Ω which is point-wise bounded on every set of a fixed Wells class, then K is uniformly bounded. (2)The Nikodym Covergence Theorem. If {μn} is a sequence of regular Borel vector measures on Ω which is converguent on every set of a fixed Wells class, then the μn are uniformly countably additive, the sequence {μn} is convergent on every Borel subset of Ω and the pointwise limit constitutes a regular Borel measure.


1988 ◽  
Vol 38 (1) ◽  
pp. 55-56
Author(s):  
F.G.J. Wiid

We characterise relative weak compactness in σBM(∑, X), the space of sigma-additive, X-valued measures of bounded variation, where X is a Banach space.


Author(s):  
S. Okada ◽  
W. J. Ricker

AbstractLet m be a vector measure with values in a Banach space X. If L1(m) denotes the space of all m integrable functions then, with respect to the mean convergence topology, L1(m) is a Banach space. A natural operator associated with m is its integration map Im which sends each f of L1(m) to the element ∫fdm (of X). Many properties of the (continuous) operator Im are closely related to the nature of the space L1(m). In general, it is difficult to identify L1(m). We aim to exhibit non-trivial examples of measures m in (non-reflexive) spaces X for which L1(m) can be explicitly computed and such that Im is not weakly compact. The examples include some well known operators from analysis (the Fourier transform on L1 ([−π, π]), the Volterra operator on L1 ([0, 1]), compact self-adjoint operators in a Hilbert space); such operators can be identified with integration maps Im (or their restrictions) for suitable measures m.


1988 ◽  
Vol 31 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Oscar Blasco

In this paper we shall introduce a certain class of operators from a Banach lattice X into a Banach space B (see Definition 1) which is closely related to p-absolutely summing operators defined by Pietsch [8].These operators, called positive p-summing, have already been considered in [9] in the case p = 1 (there they are called cone absolutely summing, c.a.s.) and in [1] by the author who found this space to be the space of boundary values of harmonic B-valued functions in .Here we shall use these spaces and the space of majorizing operators to characterize the space of bounded p-variation measures and to endow the tensor product with a norm in order to get as its completion in this norm.


Sign in / Sign up

Export Citation Format

Share Document