APPROXIMATE ANALYTICAL SOLUTION OF KLEIN-GORDON EQUATIONS BY THE MODIFIED ADOMIAN DECOMPOSITION METHOD

2020 ◽  
Vol 9 (11) ◽  
pp. 9079-9087
Author(s):  
Y. Q. Hasan ◽  
A. A. Olalekan ◽  
N. M. Dabwan ◽  
S. A. Alaqel ◽  
S. G. Othman ◽  
...  
Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1542
Author(s):  
Saima Rashid ◽  
Khadija Tul Kubra ◽  
Juan Luis García Guirao

In this paper, the Aboodh transform is utilized to construct an approximate analytical solution for the time-fractional Zakharov–Kuznetsov equation (ZKE) via the Adomian decomposition method. In the context of a uniform magnetic flux, this framework illustrates the action of weakly nonlinear ion acoustic waves in plasma carrying cold ions and hot isothermal electrons. Two compressive and rarefactive potentials (density fraction and obliqueness) are illustrated. With the aid of the Caputo derivative, the essential concepts of fractional derivatives are mentioned. A powerful research method, known as the Aboodh Adomian decomposition method, is employed to construct the solution of ZKEs with success. The Aboodh transform is a refinement of the Laplace transform. This scheme also includes uniqueness and convergence analysis. The solution of the projected method is demonstrated in a series of Adomian components that converge to the actual solution of the assigned task. In addition, the findings of this procedure have established strong ties to the exact solutions to the problems under investigation. The reliability of the present procedure is demonstrated by illustrative examples. The present method is appealing, and the simplistic methodology indicates that it could be straightforwardly protracted to solve various nonlinear fractional-order partial differential equations.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 780-785 ◽  
Author(s):  
Sunday O. Edeki ◽  
Tanki Motsepa ◽  
Chaudry Masood Khalique ◽  
Grace O. Akinlabi

Abstract The Greek parameters in option pricing are derivatives used in hedging against option risks. In this paper, the Greeks of the continuous arithmetic Asian option pricing model are derived. The derivation is based on the analytical solution of the continuous arithmetic Asian option model obtained via a proposed semi-analytical method referred to as Laplace-Adomian decomposition method (LADM). The LADM gives the solution in explicit form with few iterations. The computational work involved is less. Nonetheless, high level of accuracy is not neglected. The obtained analytical solutions are in good agreement with those of Rogers & Shi (J. of Applied Probability 32: 1995, 1077-1088), and Elshegmani & Ahmad (ScienceAsia, 39S: 2013, 67–69). The proposed method is highly recommended for analytical solution of other forms of Asian option pricing models such as the geometric put and call options, even in their time-fractional forms. The basic Greeks obtained are the Theta, Delta, Speed, and Gamma which will be of great help to financial practitioners and traders in terms of hedging and strategy.


Sign in / Sign up

Export Citation Format

Share Document