scholarly journals Using the flicker task to estimate visual working memory storage capacity

2019 ◽  
Vol 82 (3) ◽  
pp. 1271-1289 ◽  
Author(s):  
Hrag Pailian ◽  
Daniel J. Simons ◽  
Jeffrey Wetherhold ◽  
Justin Halberda
2019 ◽  
Author(s):  
Christine Salahub ◽  
Stephen Emrich

Individuals with anxiety have attentional biases toward threat-related distractors. This deficit in attentional control has been shown to impact visual working memory (VWM) filtering efficiency, as anxious individuals inappropriately store threatening distractors in VWM. It remains unclear, however, whether this mis-allocation of memory resources is due to inappropriate attentional enhancement of threatening distractors, or to a failure in suppression. Here, we used a systematically lateralized VWM task with fearful and neutral faces to examine event-related potentials related to attentional selection (N2pc), suppression (PD), and working memory maintenance (CDA). We found that state anxiety correlated with attentional enhancement of threat-related distractors, such that more anxious individuals had larger N2pc amplitudes toward fearful distractors than neutral distractors. However, there was no correlation between anxiety and memory storage of fearful distractors (CDA). These findings demonstrate that anxiety biases attention toward fearful distractors, but that this bias does not always guarantee increased memory storage of threat-related distractors.


2012 ◽  
Vol 24 (5) ◽  
pp. 1069-1076 ◽  
Author(s):  
David E. Anderson ◽  
Theodore A. Bell ◽  
Edward Awh

By the request of the authors, the following two research articles will be retracted from the Journal of Cognitive Neuroscience: 1. Anderson, D. E., Ester, E. F., Klee, D., Vogel, E. K., & Awh, E. (2014). Electrophysiological evidence for failures of item individuation in crowded visual displays. Journal of Cognitive Neuroscience, 26(10), 2298– 2309. https://dx.doi.org/10.1162/jocn_a_00649 . 2. Anderson, D. E., Bell, T. A., & Awh, E. (2012). Polymorphisms in the 5-HTTLPR gene mediate storage capacity of visual working memory. Journal of Cognitive Neuroscience, 24(5), 1069–1076. https://dx.doi. org/10.1162/jocn_a_00207 . On August 1, 2015, the Office of Research Integrity (ORI) announced a settlement agreement with David E. Anderson, the Respondent ( http://ori.hhs.gov/content/ case-summary-anderson-david ). On the basis of the Respondent’s admission and an analysis by the University of Oregon, ORI concluded that the Respondent had engaged in research misconduct by falsifying and/or fabricating data in four publications. Those publications were retracted immediately after the release of the ORI findings. Since that time, additional problems have been discovered with Article 1 above. Data points shown in Figure 8 were removed without justification and in contradiction to the analytic approach described in the methods and results. In light of this discovery and of the previous ORI findings, authors Bell and Awh no longer have confidence in the integrity of the data in Article 2. For these reasons, all authors on both articles (including the Respondent) have agreed to the retraction of Articles 1 and 2 above.


2018 ◽  
Vol 22 (3) ◽  
pp. 189-190 ◽  
Author(s):  
Surya Gayet ◽  
Chris L.E. Paffen ◽  
Stefan Van der Stigchel

Cortex ◽  
2003 ◽  
Vol 39 (4-5) ◽  
pp. 927-946 ◽  
Author(s):  
B POSTLE ◽  
T DRUZGAL ◽  
M DESPOSITO

2017 ◽  
Author(s):  
Matthew R. Nassar ◽  
Julie C. Helmers ◽  
Michael J. Frank

AbstractThe nature of capacity limits for visual working memory has been the subject of an intense debate that has relied on models that assume items are encoded independently. Here we propose that instead, similar features are jointly encoded through a “chunking” process to optimize performance on visual working memory tasks. We show that such chunking can: 1) facilitate performance improvements for abstract capacity-limited systems, 2) be optimized through reinforcement, 3) be implemented by center-surround dynamics, and 4) increase effective storage capacity at the expense of recall precision. Human performance on a variant of a canonical working memory task demonstrated performance advantages, precision detriments, inter-item dependencies, and trial-to-trial behavioral adjustments diagnostic of performance optimization through center-surround chunking. Models incorporating center-surround chunking provided a better quantitative description of human performance in our study as well as in a meta-analytic dataset, and apparent differences in working memory capacity across individuals were attributable to individual differences in the implementation of chunking. Our results reveal a normative rationale for center-surround connectivity in working memory circuitry, call for re-evaluation of memory performance differences that have previously been attributed to differences in capacity, and support a more nuanced view of visual working memory capacity limitations: strategic tradeoff between storage capacity and memory precision through chunking contribute to flexible capacity limitations that include both discrete and continuous aspects.


2020 ◽  
Vol 87 (9) ◽  
pp. S403 ◽  
Author(s):  
Molly Erickson ◽  
Dillon Smith ◽  
Laura Crespo ◽  
Steven Silverstein

2017 ◽  
Vol 13 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Mengsi Xu ◽  
Lei Qiao ◽  
Senqing Qi ◽  
Zhiai Li ◽  
Liuting Diao ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Polina Iamshchinina ◽  
Thomas B. Christophel ◽  
Surya Gayet ◽  
Rosanne L. Rademaker

Sign in / Sign up

Export Citation Format

Share Document