scholarly journals Voice activity detection in noisy conditions using tiny convolutional neural network

Informatics ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 36-43
Author(s):  
R. S. Vashkevich ◽  
E. S. Azarov

The paper investigates the problem of voice activity detection from a noisy sound signal. An extremely compact convolutional neural network is proposed. The model has only 385 trainable parameters. Proposed model doesn’t require a lot of computational resources that allows to use it as part of the “internet of things” concept for compact low power devices. At the same time the model provides state of the art results in voice activity detection in terms of detection accuracy. The properties of the model are achieved by using a special convolutional layer that considers the harmonic structure of vocal speech. This layer also eliminates redundancy of the model because it has invariance to changes of fundamental frequency. The model performance is evaluated in various noise conditions with different signal-to-noise ratios. The results show that the proposed model provides higher accuracy compared to voice activity detection model from the WebRTC framework by Google.


2019 ◽  
Vol 9 (14) ◽  
pp. 2867 ◽  
Author(s):  
Hongyan Xu ◽  
Xiu Su ◽  
Yi Wang ◽  
Huaiyu Cai ◽  
Kerang Cui ◽  
...  

Concrete bridge crack detection is critical to guaranteeing transportation safety. The introduction of deep learning technology makes it possible to automatically and accurately detect cracks in bridges. We proposed an end-to-end crack detection model based on the convolutional neural network (CNN), taking the advantage of atrous convolution, Atrous Spatial Pyramid Pooling (ASPP) module and depthwise separable convolution. The atrous convolution obtains a larger receptive field without reducing the resolution. The ASPP module enables the network to extract multi-scale context information, while the depthwise separable convolution reduces computational complexity. The proposed model achieved a detection accuracy of 96.37% without pre-training. Experiments showed that, compared with traditional classification models, the proposed model has a better performance. Besides, the proposed model can be embedded in any convolutional network as an effective feature extraction structure.





2020 ◽  
Vol 14 ◽  
Author(s):  
Guoqiang Chen ◽  
Bingxin Bai ◽  
Huailong Yi

Background: Background: The development of deep learning technology has promoted the industrial intelligence, and automatic driving vehicles have become a hot research direction. As to the problem that pavement potholes threaten the safety of automatic driving vehicles, the pothole detection under complex environment conditions is studied. Objective: The goal of the work is to propose a new model of pavement pothole detection based on convolutional neural network. The main contribution is that the Multi-level Feature Fusion Block and the Detector Cascading Block are designed and a series of detectors are cascaded together to improve the detection accuracy of the proposed model. Methods: A pothole detection model is designed based on the original object detection model. In the study, the Transfer Connection Block in the Object Detection Module is removed and the Multi-level Feature Fusion Block is redesigned. At the same time, a Detector Cascading Block with multi-step detection is designed. Detectors are connected directly to the feature map and cascaded. In addition, the structure skips the transformation step. Results: The proposed method can be used to detect potholes efficiently. The real-time and accuracy of the model are improved after adjusting the network parameters and redesigning the model structure. The maximum detection accuracy of the proposed model is 75.24%. Conclusion: The Multi-level Feature Fusion Block designed enhances the fusion of high and low layer feature information and is conducive to extracting a large amount of target information. The Detector Cascade Block is a detector with cascade structure, which can realize more accurate prediction of the object. In a word, the model designed has greatly improved the detection accuracy and speed, which lays a solid foundation for pavement pothole detection under complex environmental conditions.





2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.



Author(s):  
Dima M. Alalharith ◽  
Hajar M. Alharthi ◽  
Wejdan M. Alghamdi ◽  
Yasmine M. Alsenbel ◽  
Nida Aslam ◽  
...  

Computer-based technologies play a central role in the dentistry field, as they present many methods for diagnosing and detecting various diseases, such as periodontitis. The current study aimed to develop and evaluate the state-of-the-art object detection and recognition techniques and deep learning algorithms for the automatic detection of periodontal disease in orthodontic patients using intraoral images. In this study, a total of 134 intraoral images were divided into a training dataset (n = 107 [80%]) and a test dataset (n = 27 [20%]). Two Faster Region-based Convolutional Neural Network (R-CNN) models using ResNet-50 Convolutional Neural Network (CNN) were developed. The first model detects the teeth to locate the region of interest (ROI), while the second model detects gingival inflammation. The detection accuracy, precision, recall, and mean average precision (mAP) were calculated to verify the significance of the proposed model. The teeth detection model achieved an accuracy, precision, recall, and mAP of 100 %, 100%, 51.85%, and 100%, respectively. The inflammation detection model achieved an accuracy, precision, recall, and mAP of 77.12%, 88.02%, 41.75%, and 68.19%, respectively. This study proved the viability of deep learning models for the detection and diagnosis of gingivitis in intraoral images. Hence, this highlights its potential usability in the field of dentistry and aiding in reducing the severity of periodontal disease globally through preemptive non-invasive diagnosis.



Sign in / Sign up

Export Citation Format

Share Document