scholarly journals Effect of Ammonia Injection on NOx and N2O Emissions from Bubbling Fluidized Bed Combustion.

1992 ◽  
Vol 71 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Tadaaki SHIMIZU ◽  
Yutaka TACHIYAMA ◽  
Ayumu KURODA ◽  
Makoto INAGA
2005 ◽  
Vol 128 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Alberto Bahillo ◽  
Lourdes Armesto ◽  
Andrés Cabanillas ◽  
Juan Otero

Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Fluidized bed combustion has been extended to burn different wastes that have problems with their disposal showing its technical feasibility. Considering the characteristics of the leather waste, especially the heating value (12.5-21MJ∕kg), it is a fairly good fuel. Moreover, leather waste has a high volatile matter, 65%, similar to other biomasses and unusual high nitrogen content, 14%. The aim of this work was to study leather wastes combustion in fluidized bed presenting experimental results regarding NOx and N2O emissions. A series of experiments were carried out in a fluidized bed pilot plant to understand the importance of operating parameters such as furnace temperature, oxygen content in gases, staged combustion and residence time on the NOx and N2O emission level. Despite having high nitrogen content, low conversion of N-fuel to NOx and N2O was measured during the combustion of leather waste in BFB. Bed temperature and oxygen content were found as the most important single parameters on N2O emission and only oxygen content has a significant influence on NOx emission. Leather waste exhibits a great NOx∕O2 trend; NOx emission decreases as the oxygen concentration decreases while the effect of combustion temperature on NOx is insignificant. Staged combustion does not give a reduction in NOx.


1987 ◽  
Author(s):  
E J Anthony ◽  
H A Becker ◽  
R K Code ◽  
R W McCleave ◽  
J R Stephenson

Fuel ◽  
2014 ◽  
Vol 128 ◽  
pp. 390-395 ◽  
Author(s):  
Hao Wu ◽  
Tor Laurén ◽  
Patrik Yrjas ◽  
Pasi Vainikka ◽  
Mikko Hupa

2016 ◽  
Vol 4 (2) ◽  
pp. 2278-2290 ◽  
Author(s):  
Gabriel M. Faé Gomes ◽  
Caterina Philipssen ◽  
Eduardo K. Bard ◽  
Leandro Dalla Zen ◽  
Guilherme de Souza

Author(s):  
A. J. Minchener

Fluidized bed combustion (FBC) in various forms has been used to burn all types of coal, coal waste and a wide variety of other fuels, either singly or cofired with coal. FBC boilers are currently available commercially in the capacity range from 1 MWth to over 250 MWe and continue to be adopted for a variety of commercial, industrial and power generation applications. There are two main derivatives of FBC, namely bubbling fluidized bed combustion (BFBC) and circulating fluidized bed combustion (CFBC). There are also several hybrid systems and pressurized versions of both BFBC and CFBC. The status of these different systems, with some now fully commercial and some still under development, is described, with projections made for future development requirements and market opportunities.


Sign in / Sign up

Export Citation Format

Share Document