Fluidized bed combustion systems for power generation and other industrial applications

Author(s):  
A. J. Minchener

Fluidized bed combustion (FBC) in various forms has been used to burn all types of coal, coal waste and a wide variety of other fuels, either singly or cofired with coal. FBC boilers are currently available commercially in the capacity range from 1 MWth to over 250 MWe and continue to be adopted for a variety of commercial, industrial and power generation applications. There are two main derivatives of FBC, namely bubbling fluidized bed combustion (BFBC) and circulating fluidized bed combustion (CFBC). There are also several hybrid systems and pressurized versions of both BFBC and CFBC. The status of these different systems, with some now fully commercial and some still under development, is described, with projections made for future development requirements and market opportunities.

2003 ◽  
Vol 7 (2) ◽  
pp. 33-42
Author(s):  
Emmanuel Kakaras ◽  
Panagiotis Grammelis ◽  
George Skodras ◽  
Panagiotis Vourliotis

The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC) facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA) and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.


Author(s):  
Matteo Bruzzone ◽  
Silvia Ravelli

It is well known that the Łagisza power plant in Poland is the world’s first supercritical circulating fluidized bed (CFB) boiler, whose commercial operation started on June 2009. It has attracted a great deal of interest and operational data are publicly available, therefore it has been chosen as the object of the present study aimed at assessing load and fuel flexibility of supercritical CFB plants. First, the thermal cycle was modelled, by means of the commercial code Thermoflex®, at nominal and part load conditions for validation purposes. After having verified the validity of the applied modelling and simulation tool, the advantage of having supercritical steam combined with CFB boiler over subcritical steam and pulverized coal (PC) boiler, respectively, was quantified in terms of electric efficiency. As a next step, the designed fuel, i.e. locally mined hard coal, was replaced with biomass: 100% biomass firing was taken into account in the case of subcritical CFB boiler whereas the maximum share of biomass with coal was set at 50% with supercritical CFB boiler, consistently with the guidelines provided by the world leading manufacturers of CFB units. A broad range of biomass types was tested to conceive mixtures of fuel capable of preserving quite high performance, despite the energy consumption in pretreatment. However, the overall efficiency penalty, due to biomass co-firing, was found to potentially undermine the benefit of supercritical steam conditions compared to conventional subcritical power cycles. Indeed, the use of low-quality biomass in thermal power generation based on steam Rankine cycle may frustrate efforts to push the steam cycle boundaries.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document