ammonia injection
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 33)

H-INDEX

8
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Carlos Gervasio Rodríguez ◽  
María Isabel Lamas ◽  
Juan de Dios Rodríguez ◽  
Amr Abbas

Nowadays, the environmental impact of shipping constitutes an important challenge. In order to achieve climate neutrality as soon as possible, an important priority consists of progressing on the decarbonization of marine fuels. Free-carbon fuels, used as single fuel or in a dual-fuel mode, are gaining special interest for marine engines. A dual fuel ammonia-diesel operation is proposed in which ammonia is introduced with the intake air. According to this, the present work analyzes the possibilities of ammonia in marine diesel engines. Several ammonia-diesel proportions were analyzed, and it was found that when the proportion of ammonia is increased, important reductions of carbon dioxide, carbon monoxide, and unburnt hydrocarbons are obtained, but at the expense of increments of oxides of nitrogen (NOx), which are only low when too small or too large proportions of ammonia are employed. In order to reduce NOx too, a second ammonia injection along the expansion stroke is proposed. This measure leads to important NOx reductions.


2021 ◽  
Vol 15 (2) ◽  
pp. 131
Author(s):  
Sigit Setyawan ◽  
Ilham Satria Raditya Putra ◽  
Agik Dwika Putra ◽  
Rochim Bakti Cahyono

In power plant industries, boiler feed water (BFW) quality becomes the main parameter for steam generation, which is used for electricity production. To generate standard BFW for power plants, each impurity within water resources should be removed to prevent corrosion and scale deposition by several processes such as sedimentation, coagulation, polishing, and deaeration. Operation conditions that involved high temperature would trigger corrosion as a crucial factor in the maintenance and practical lifetime of the equipment. In the beginning of the operation, PT. Cirebon Electric Power (CEP) used All Volatile Treatment–Reduction (AVT-R) by injection of both ammonia and hydrazine. In order to optimize the operation, the BFW treatment was changed to All Volatile Treatment–Oxidation (AVT-O) that only uses of ammonia and deaerator for removing the dissolved gas. Based on the actual evaluation, AVT technology showed less performance related to corrosion prevention and high chemical consumption. Therefore, PT. CEP tried to implement modification in the BFW treatment, which is AVT technology to Oxygenated Treatment (OT). This paper is to evaluate the effect of those modifications on corrosion prevention and resource-energy saving. The modification into OT showed valuable results that decrease concentration of dissolved Fe from 1 ppb to 0.1 ppb in the deaerator outlet stream. This data reveals that good corrosion prevention can be achieved through the creation of passive layers, hematite Fe2O3. Oxygen injection into the water circulation system yielded an oxidation atmosphere so that the passive layer, Fe2O3, was formed. In addition to corrosion prevention, this modification also cut the amount of ammonia injection into the system from 2 ppm to 0.12 ppm. Reduction of that ammonia injection provides other benefits such as decreasing the volume of resin regeneration, which becomes only twice a month. This situation also created other benefits such as reducing the regeneration water, chemicals, and wastewater. Thus, the modification could establish the electricity production by PT. CEP more environmentally friendly and sustainable.A B S T R A KPada operasi PLTU, kualitas boiler feed water (BFW) menjadi parameter yang krusial untuk menghasilkan steam yang akan digunakan untuk memproduksi listrik. Untuk mendapatkan BFW sesuai dengan standar yang ada, maka pengotor di dalam air baku industri harus dihilangkan karena dapat menyebabkan korosi dan pembentukan kerak, baik pada pipa maupun peralatan. Kondisi operasi yang melibatkan steam pada suhu tinggi menyebabkan korosi menjadi masalah yang krusial terutama terkait dengan maintenance dan umur efektif pabrik. Pada awal berdirinya, PT. Cirebon Electric Power (CEP) menggunakan teknologi All Volatile Treatment–Reduction (AVT-R) dengan injeksi amonia dan hidrazin. Selanjutnya, dilakukan optimasi melalui perubahan proses menjadi All Volatile Treatment–Oxidation (AVT-O) dengan hanya menginjeksikan amonia dan mengoptimalkan fungsi deaerator untuk menghilangkan pengotor dissolved gas. Berdasarkan data lapangan, teknologi AVT yang digunakan kurang memberikan pencegahan korosi yang baik dan juga jumlah bahan kimia yang digunakan masih relatif banyak. Agar lebih ramah lingkungan dan handal, PT. CEP berusaha untuk melakukan modifikasi terhadap pengolahan boiler feed water (BFW) dari yang semula menggunakan teknologi AVT-O menjadi Oxygenated Treatment (OT). Penelitian ini bertujuan untuk mengevaluasi dampak modifikasi sistem AVT menjadi OT pada pencegahan korosi dan juga penghematan sumber daya. Modifikasi sistem AVT-O menjadi OT berhasil menurunkan konsentrasi dissolved Fe dari 1 ppb menjadi 0,1 ppb pada BFW. Hal ini menunjukkan terjadinya peningkatan pencegahan korosi melalui pembentukan double protective layer yang merupakan kombinasi magnetite (Fe3O4) dan hematite (Fe2O3). Injeksi oksigen ke dalam sistem mengubah kondisi air menjadi suasana oksidasi sehingga mampu mengubah dan membentuk lapisan baru sebagai pencegahan korosi. Selain pencegahan korosi, modifikasi ini juga berhasil menurunkan jumlah injeksi amonia dari 2 ppm menjadi 0,12 ppm dalam siklus air yang ada. Penurunan jumlah injeksi amonia ini akan memberikan keuntungan beruntun berupa berkurangnya frekuensi regenerasi resin dari semula 8 menjadi 2 kali perbulan. Kondisi ini akan menghasilkan penghematan sumber daya berupa kebutuhan air untuk regenerasi, bahan kimia amonia, dan beban pencemaran. Oleh karena itu, modifikasi ini telah membuat proses produksi listrik di PT. CEP lebih ramah lingkungan dan berkelanjutan.Kata kunci: All Volatile Treatment (AVT); efisiensi energi; korosi boiler; Oxygenated Treatment (OT)


2021 ◽  
Vol 156 (A3) ◽  
Author(s):  
M I Lamas ◽  
C G Rodríguez ◽  
J D Rodríguez ◽  
J Telmo

Taking into account the importance of NOx (nitrogen oxides) emissions from marine engines and the current increasingly restrictive legislation, this work aims to develop a numerical model to study NOx reduction. To this end, direct injection of NH3 (ammonia) into the combustion chamber was proposed in the MAN B&W 7S50MC marine engine. The numerical model was employed to analyze several injection temperatures, injection timings and ammonia to fuel ratios, obtaining NOx reductions of almost 60%. Besides, a comparison between ammonia injection and water injection was done. The results showed that ammonia is more efficient than water to reduce NOx with a negligible influence on other pollutants such as CO (carbon monoxide) and HC (hydrocarbons). Nevertheless, ammonia is efficient in a very restrictive temperature and injection timing range. This numerical model was compared with experimental measurements, obtaining satisfactory results which validate the work.


Author(s):  
Myung Soo Kang ◽  
Hyun Sik Choi ◽  
Jaeuk Shin ◽  
Tae U Yu ◽  
Jungho Hwang

2021 ◽  
pp. 763-777
Author(s):  
Jinglong Liu ◽  
Fanjun Hou ◽  
Limeng Zhang ◽  
Chuanjun Duan ◽  
Haojie Liu ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Peiran Xie ◽  
Guangming Zhang ◽  
Yuguang Niu ◽  
Tianshu Sun

The control of flue gas emission in thermal power plants has been a topic of concern. Selective catalytic reduction technology has been widely used as an effective flue gas treatment technology. However, precisely controlling the amount of ammonia injected remains a challenge. Too much ammonia not only causes secondary pollution but also corrodes the reactor equipment, while too little ammonia does not effectively reduce the NOx content. In recent years, deep reinforcement learning has achieved better results than traditional methods in decision making and control, which provides new methods for better control of selective catalytic reduction systems. The purpose of this research is to design an intelligent controller using reinforcement learning technology, which can accurately control ammonia injection, and achieve higher denitrification effect and less secondary pollution. To train the deep reinforcement learning controller, a high-precision virtual denitration environment is first constructed. In order to make the virtual environment more realistic, this virtual environment was designed as a special structure with two decoders and a unique approach was used in fitting the virtual environment. A deep deterministic policy agent is used as an intelligent controller to control the amount of injected ammonia. To make the intelligent controller more stable, the actor-critic framework and the experience pool approach were adopted. The results show that the intelligent controller can control the emissions of nitrogen oxides and ammonia at the outlet of the reactor after training in virtual environment.


Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 253-271
Author(s):  
Ronan Pelé ◽  
Christine Mounaïm-Rousselle ◽  
Pierre Bréquigny ◽  
Camille Hespel ◽  
Jérôme Bellettre

Using carbon free energy sources is one of the keys to mitigate climate change. Hydrogen promises to be one of these carbon free energies, but its storage is difficult and expensive. Ammonia, however, is interesting as it can store hydrogen safely and can be used in combustion engines instead of hydrocarbon fuels. In this experimental work, the spray characteristics of ammonia under different air densities and temperatures were investigated in constant volume and were compared to a biofuel, ethanol, and a common fuel, gasoline. The Schlieren technique was used to capture images of liquid and liquid + vapor spray. The penetration length, the angle near the injector and the angle at half-penetration length were measured. The results show that the spray geometry of ammonia differs from that of the other fuels and that its sensitivity to air density and temperature is greater. The flash boiling condition at ambient temperature was explored for ammonia and indicated a wider spray at half-penetration length at phase change. Moreover, a semi-empirical correlation for penetration length as a function of physical parameters was found with a high accuracy for the global spray. These experimental data provide the first information about ammonia injection with a current spark-ignition GDI injector.


Sign in / Sign up

Export Citation Format

Share Document