scholarly journals Efficient Microstrip Antenna system using Reduced GP Structure for Ultra-Wide Band (UWB) Applications

YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 790-807
Author(s):  
N Parthiban ◽  
◽  
M Mohamed Ismail ◽  

Microstrip antenna is an essential choice for Ultra Wide Band (UWB) applications of its light weight, low profile and easy to form antenna arrays. However, the design of microstrip patch antenna bandwidth is greatly affects by the dielectric substrate material (FR4). In this research, the bandwidth enhancement of MPA was designed by minimizing the dimension of Defected GP (DGP) in GP for Ultra Wide Band wireless applications. But, the antenna design complexity increases with the number of an operating frequency band. In this research, the MPA was designed as small as size of 10×13×1.6 mm and operates on frequency band between 3.1GHz to 10.6GHz for VSWR less than 2. The microstrip patch antenna was designed at 3.1GHz to 10.6GHz using High-Frequency Structure Simulator (HFSS) software. The simulation result shows that the proposed microstrip patch antenna obtained <-10dB of return loss from 3.1GHz to 10.6GHz throughout the frequency range. The measured result proves that the proposed microstrip patch antenna has better characteristics to fulfill the requirements of UWB applications

2021 ◽  
Author(s):  
Parthiban N ◽  
Mohamed Ismail M

Abstract Microstrip antenna is an essential choice for Ultra Wide Band (UWB) applications of its light weight, low profile and easy to form antenna arrays. However, the design of microstrip patch antenna bandwidth is greatly affects by the dielectric substrate material (FR4). In this research, the bandwidth enhancement of MPA was designed by minimizing the dimension of Defected GP (DGP) in GP for Ultra Wide Band wireless applications. But, the antenna design complexity increases with the number of an operating frequency band. In this research, the MPA was designed as small as size of 10×13×1.6 mm and operates on frequency band between 3.1GHz to 10.6GHz for VSWR less than 2. The microstrip patch antenna was designed at 3.1GHz to 10.6GHz using High-Frequency Structure Simulator (HFSS) software. The simulation result shows that the proposed microstrip patch antenna obtained <-10dB of return loss from 3.1GHz to 10.6GHz throughout the frequency range. The measured result proves that the proposed microstrip patch antenna has better characteristics to fulfill the requirements of UWB applications.


2021 ◽  
Author(s):  
Parthiban N ◽  
Mohamed Ismail M

Abstract Microstrip antenna is an essential choice for Ultra Wide Band (UWB) applications of its light weight, low profile and easy to form antenna arrays. However, the design of microstrip patch antenna bandwidth is greatly affects by the dielectric substrate material (FR4). In this research, the bandwidth enhancement of MPA was designed by minimizing the dimension of Defected GP (DGP) in GP for Ultra Wide Band wireless applications. But, the antenna design complexity increases with the number of an operating frequency band. In this research, the MPA was designed as small as size of 10×13×1.6 mm and operates on frequency band between 3.1GHz to 10.6GHz for VSWR less than 2. The microstrip patch antenna was designed at 3.1GHz to 10.6GHz using High-Frequency Structure Simulator (HFSS) software. The simulation result shows that the proposed microstrip patch antenna obtained <-10dB of return loss from 3.1GHz to 10.6GHz throughout the frequency range. The measured result proves that the proposed microstrip patch antenna has better characteristics to fulfill the requirements of UWB applications.


2021 ◽  
pp. 491-496
Author(s):  
Aditi Chauhan ◽  
Utkarsh Jain ◽  
Aakash Warke ◽  
Manan Gupta ◽  
Ashok Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document