antenna arrays
Recently Published Documents





Satyanand Singh ◽  
Sajai Vir Singh ◽  
Dinesh Yadav ◽  
Sanjay Kumar Suman ◽  
Bhagyalakshmi Lakshminarayanan ◽  

This paper introduces a significant special situation where the noise is a collection of D-plane interference signals and the correlated noise of D+1 is less than the number of array components. An optimal beamforming processor based on the minimum variance distortionless response (MVDR) generates and combines appropriate statistics for the D+1 model. Instead of the original space of the N-dimensional problem, the interference signal subspace is reduced to D+1. Typical antenna arrays in many modern communication networks absorb waves generated from multiple point sources. An analytical formula was derived to improve the signal to interference and noise ratio (SINR) obtained from the steering errors of the two beamformers. The proposed MVDR processor-based beamforming does not enforce general constraints. Therefore, it can also be used in systems where the steering vector is compromised by gain. Simulation results show that the output of the proposed beamformer based on the MVDR processor is usually close to the ideal state within a wide range of signal-to-noise ratio and signal-to-interference ratio. The MVDR processor-based beamformer has been experimentally evaluated. The proposed processor-based MVDR system significantly improves performance for large interference white noise ratio (INR) in the sidelobe region and provide an appropriate beam pattern.

Brijesh Kumar Soni ◽  
Kamaljeet Singh ◽  
Amit Rathi ◽  
Sandeep Sancheti

In recent times rectangular patch antenna design has become the most innovative and popular subject due to its advantages, such as being lightweight, conformal, ease to fabricate, low cost and small size. In this paper design of aperture coupled microstrip patch antenna (MSA) on high index semiconductor material coupled with micromachining technique for performance enhancement is discussed. The performance in terms of return loss bandwidth, gain, cross-polarization and antenna efficiency is compared with standard aperture coupled antenna. Micromachining underneath of the patch helps in to reduce the effective dielectric constant, which is desirable for the radiation characteristics of the patch antenna. Improvement 36 percent and 18 percent in return loss bandwidth and gain respectively achieved using micromachined aperture coupled feed patch, which is due to the reduction in losses, suppression of surface waves and substrate modes. In this article along with design, fabrication aspects on Si substrate using MEMS process also discussed. Presented antenna design is proposed antenna can be useful in smart antenna arrays suitable in satellite, radar communication applications. Two topologies at X-band are fabricated and comparison between aperture coupled and micromachined aperture coupled are presented. Index Terms—Microstrip Patch Antenna, Aperture Coupled, Micromachining, High Resistivity Silicon

Hamdi Bilel ◽  
Aguili Taoufik

This paper proposes a radiation pattern synthesis of the almost periodic antenna arrays including mutual coupling effects (that extracted by the Floquet analysis according to our previous work), which principally has a high directivity and large bandwidth. For modeling the given structures, the moment method combined with the Generalized Equivalent Circuit (MoM-GEC) is proposed. The artificial neural network (ANN) as a powerful computational model has been successfully applied to the antenna array pattern synthesis. The results showed that the multilayer feedforward neural networks are rugged and can successfully and efficiently resolve various distinctive complex almost periodic antenna patterns (with different source amplitudes) (in particular, both periodic and randomly aperiodic structures are taken into account). However, the artificial neural network (ANN) is capable of quickly producing the synthesis results using generalization with the early stopping (ES) method. A significant time gain and memory consumption are achieved by using this given method to improve the generalization (called early stopping). To justify this work, several examples are developed and discussed.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 170
Yasser Albagory ◽  
Fahad Alraddady

Antenna arrays have become an essential part of most wireless communications systems. In this paper, the unwanted sidelobes in the symmetric linear array power pattern are reduced efficiently by utilizing a faster simultaneous sidelobes processing algorithm, which generates nulling sub-beams that are adapted to control and maintain steep convergence toward lower sidelobe levels. The proposed algorithm is performed using adaptive damping and heuristic factors which result in learning curve perturbations during the first few loops of the reduction process and is followed by a very steep convergence profile towards deep sidelobe levels. The numerical results show that, using the proposed adaptive sidelobes simultaneous reduction algorithm, a maximum sidelobe level of −50 dB can be achieved after only 10 iteration loops (especially for very large antenna arrays formed by 256 elements, wherein the processing time is reduced to approximately 25% of that required by the conventional fixed damping factor case). On the other hand, the generated array weights can be applied to practical linear antenna arrays under mutual coupling effects, which have shown very similar results to the radiation pattern of the isotropic antenna elements with very deep sidelobe levels and the same beamwidth.

2022 ◽  
Vol 72 (1) ◽  
pp. 67-72
Anil Kumar Yerrola ◽  
Maifuz Ali ◽  
Ravi Kumar Arya ◽  
Lakhindar Murmu ◽  
Ashwani Kumar

In millimeter-wave (mmWave) communications, the antenna gain is a crucial parameter to overcome path loss and atmospheric attenuation. This work presents the design of two cylindrical conformal antenna arrays, made of modified rectangular microstrip patch antenna as a radiating element, working at 28 GHz for mmWave applications providing high gain and beam steering capability. The microstrip patch antenna element uses Rogers RO4232 substrate with a thickness of 0.5 mm and surface area of 5.8 mm × 5.8 mm. The individual antenna element provides a gain of 6.9 dBi with return loss bandwidth of 5.12 GHz. The first antenna array, made by using five conformal antenna elements, achieves a uniform gain of approximately 12 dBi with minimal scan loss for extensive scan angles. In the second antenna array, a dielectric superstrate using Rogers TMM (10i) was used to modify the first antenna array. It enhanced the gain to approximately 16 dBi while still maintaining low scan loss for wide angles. The proposed array design method is very robust and can be applied to any conformal surface. The mathematical equations are also provided to derive the array design, and both array designs are verified by using full-wave simulations.

2022 ◽  
Vol 70 (1) ◽  
pp. 581-599
Alamgir Safi ◽  
Muhammad Asghar Khan ◽  
Fahad Algarni ◽  
Muhammad Adnan Aziz ◽  
M. Irfan Uddin ◽  

Sign in / Sign up

Export Citation Format

Share Document