scholarly journals Analysis of Trunk Neural Crest Cell Migration using a Modified Zigmond Chamber Assay

Author(s):  
Christopher C. Walheim ◽  
Juan Pablo Zanin ◽  
Maria Elena de Bellard
genesis ◽  
2018 ◽  
Vol 56 (9) ◽  
pp. e23239 ◽  
Author(s):  
Louise Dyson ◽  
Alexander Holmes ◽  
Ang Li ◽  
Paul M. Kulesa

1982 ◽  
Vol 93 (2) ◽  
pp. 324-343 ◽  
Author(s):  
Jean Paul Thiery ◽  
Jean Loup Duband ◽  
Annie Delouvée

Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 15-22 ◽  
Author(s):  
B. Ranscht ◽  
M. Bronner-Fraser

Trunk neural crest cells and motor axons move in a segmental fashion through the rostral (anterior) half of each somitic sclerotome, avoiding the caudal (posterior) half. This metameric migration pattern is thought to be caused by molecular differences between the rostral and caudal portions of the somite. Here, we describe the distribution of T-cadherin (truncated-cadherin) during trunk neural crest cell migration. T-cadherin, a novel member of the cadherin family of cell adhesion molecules was selectively expressed in the caudal half of each sclerotome at all times examined. T-cadherin immunostaining appeared graded along the rostrocaudal axis, with increasing levels of reactivity in the caudal halves of progressively more mature (rostral) somites. The earliest T-cadherin expression was detected in a small population of cells in the caudal portion of the somite three segments rostral to last-formed somite. This initial T-cadherin expression was observed concomitant with the invasion of the first neural crest cells into the rostral portion of the same somite in stage 16 embryos. When neural crest cells were ablated surgically prior to their emigration from the neural tube, the pattern of T-cadherin immunoreactivity was unchanged compared to unoperated embryos, suggesting that the metameric T-cadherin distribution occurs independent of neural crest cell signals. This expression pattern is consistent with the possibility that T-cadherin plays a role in influencing the pattern of neural crest cell migration and in maintaining somite polarity.


2021 ◽  
Author(s):  
Thabiso Tshabalala ◽  
Pilani Nkomozepi ◽  
Amadi Ogonda Ihunwo ◽  
Felix Mbajiorgu

2011 ◽  
Vol 356 (1) ◽  
pp. 197
Author(s):  
Dennis A. Ridenour ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Katherine W. Prather ◽  
Craig L. Semerad ◽  
...  

2003 ◽  
Vol 226 (4) ◽  
pp. 713-718 ◽  
Author(s):  
Yanding Zhang ◽  
Shusheng Wang ◽  
Yiqiang Song ◽  
Jun Han ◽  
Yang Chai ◽  
...  

2018 ◽  
Vol 247 (12) ◽  
pp. 1286-1296 ◽  
Author(s):  
Kimberly E. Inman ◽  
Carlo Donato Caiaffa ◽  
Kristin R. Melton ◽  
Lisa L. Sandell ◽  
Annita Achilleos ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Sign in / Sign up

Export Citation Format

Share Document