axon growth
Recently Published Documents


TOTAL DOCUMENTS

864
(FIVE YEARS 216)

H-INDEX

81
(FIVE YEARS 6)

Author(s):  
Yongyang Liu ◽  
Yaxin Lu ◽  
Zhiyong Tang ◽  
Yuheng Cao ◽  
Dehua Huang ◽  
...  

Axonal transport plays a significant role in the establishment of neuronal polarity, axon growth, and synapse formation during neuronal development. The axon of a naturally growing neuron is a highly complex and multifurcated structure with a large number of bends and branches. Nowadays, the study of dynamic axonal transport in morphologically complex neurons is greatly limited by the technological barrier. Here, a sparse gene transfection strategy was developed to locate fluorescent mCherry in the lysosome of primary neurons, thus enabling us to track the lysosome-based axonal transport with a single-particle resolution. Thereby, several axonal transport models were observed, including forward or backward transport model, stop-and-go model, repeated back-and-forth transport model, and cross-branch transport model. Then, the accurate single-particle velocity quantification by TrackMate revealed a highly heterogeneous and discontinuous transportation process of lysosome-based axonal transport in freely orientated axons. And, multiple physical factors, such as the axonal structure and the size of particles, were disclosed to affect the velocity of particle transporting in freely orientated axons. The combined single-particle fluorescence tracking and TrackMate assay can be served as a facile tool for evaluating axonal transport in neuronal development and axonal transport-related diseases.


2022 ◽  
Author(s):  
Zheng Shi ◽  
Sarah Innes-Gold ◽  
Adam Ezra Cohen

Neuronal axons must navigate a mechanically heterogeneous environment to reach their targets, but the biophysical mechanisms coupling mechanosensation, growth, and branching are not fully understood. Here, we show that local changes in membrane tension propagate along axons at approximately 20 μm/s, more than 1000-fold faster than in other non-motile cells. This rapid and long-range mechanical signaling mediates bidirectional competition between axonal branch initiation and growth cone extension. Our data suggest a mechanism by which mechanical cues at one part of a growing axon can affect growth dynamics remotely.


2022 ◽  
Vol 17 (8) ◽  
pp. 0
Author(s):  
Qian-Ru He ◽  
Meng Cong ◽  
Fan-Hui Yu ◽  
Yu-Hua Ji ◽  
Shu Yu ◽  
...  

2022 ◽  
Vol 17 (2) ◽  
pp. 362
Author(s):  
Yi Li ◽  
Jian Wu ◽  
Zhen-Yu Zhu ◽  
Zhi-Wei Fan ◽  
Ying Chen ◽  
...  

2021 ◽  
Author(s):  
János Vörös ◽  
Sean Weaver ◽  
Jose C. Mateus ◽  
Paulo Aguiar ◽  
Dirk van Swaay ◽  
...  

Methods for patterning neurons in vitro have gradually improved and are used to investigate questions difficult to address in or ex vivo. Though these techniques guide axons between groups of neurons, multiscale control of neuronal connectivity, from circuits to synapses, is yet to be achieved in vitro. As studying neuronal circuits with synaptic resolution in vivo poses significant challenges, an in vitro alternative could serve as a testbed for in vivo experiments or as a platform for validating biophysical and computational models. In this work we use a combination of electron beam and photolithography to create polydimethylsiloxane (PDMS) structures with features ranging from 150 nanometers to a few millimeters. Leveraging the difference between average axon and dendritic spine diameters, we restrict axon growth while allowing spines to pass through nanochannels to guide synapse formation between small groups of neurons (i.e. nodes). We show this technique can be used to generate large numbers of isolated feed-forward circuits where connections between nodes are restricted to regions connected by nanochannels. Using a genetically encoded calcium indicator in combination with fluorescently tagged post synaptic protein, PSD-95, we demonstrate functional synapses can form in this region. Although more work needs to be done to control connectivity in vitro, we believe this is a significant step in that direction.


Author(s):  
Francisca Cornejo ◽  
Bastián I. Cortés ◽  
Greg M. Findlay ◽  
Gonzalo I. Cancino

Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Zhang ◽  
Fafa Tian ◽  
Zheren Tan ◽  
Juan Du ◽  
Xiaoyan Long

Introduction: Mossy fiber sprouting (MFS) is a frequent histopathological finding in temporal lobe epilepsy (TLE) and is involved in the pathology of TLE. However, molecular signals underlying MFS remain unclear. Partitioning defective 3(Par3), atypical protein kinase C-λ(aPKC-λ), and lethal giant larvae 1(Lgl1) were involved in the neuronal polarity and axon growth. The potential roles of those proteins in MFS and epileptogenesis of TLE were investigated.Material and Methods: The epileptic rat models were established by intracerebroventricular injection of kainic acid (KA). The degree of MFS was measured by using Timm staining, Neuronal loss and the expression aPKC-λ, Par3, and Lgl1 in hippocampus were measured by using immunohistochemistry and western blot analysis.Results: The neuronal loss in CA3 region was observed from 3 days to 8 weeks, while the neuronal loss in the hilar region was observed from 1 to 8 weeks in experimental group. The Timm score in the CA3 region in experimental group was significantly higher than that in the control group from 2 to 8 weeks. Compared with control group, the expressions of Par3 and Lgl1 were upregulated and the expression of aPKC-λ was downregulated in the experimental groups. Positive correlation between the Par3 expression and Timm scores, and the negative correlation between the aPKC-λ expression and Timm scores in CA3 region were discovered in experimental group.Conclusion: The findings of the present study indicated that aPKC-λ, Par3, and Lgl1 may be involved in MFS and in the epileptogenesis of temporal lobe epilepsy.


2021 ◽  
Author(s):  
Menghon Cheah ◽  
Yuyan Cheng ◽  
Veselina Petrova ◽  
Anda Cimpean ◽  
Pavla Jendelova ◽  
...  

The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1(α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration and caused expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum, trafficking, and signalling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPS-derived sensory neurons, validating their causal contributions. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, Tfeb, Yy1. Signalling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with a distinctive program that differs from that involved in PNS regeneration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalia Kulesskaya ◽  
Dmitry Molotkov ◽  
Sonny Sliepen ◽  
Ekaterina Mugantseva ◽  
Arturo Garcia Horsman ◽  
...  

Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models. In vivo imaging of blood-oxygen-level-dependent (BOLD) signals associated with functional activity in the somatosensory cortex was used to assess the sensory functions during vibrotactile hind paw stimulation. The signal displays an exaggerated response in animals with lateral hemisection that recovers to the level seen in the sham-operated mice by injection of HB-GAM to the trauma site. The effect of HB-GAM treatment on sensory-motor functions was assessed by performance in demanding behavioral tests requiring integration of afferent and efferent signaling with central coordination. Administration of HB-GAM either by direct injection into the trauma site or by intrathecal injection improves the climbing abilities in animals with cervical hemisection and in addition enhances the grip strength in animals with lateral hemicontusion without affecting the spontaneous locomotor activity. Recovery of sensory signaling in the sensorimotor cortex by HB-GAM to the level of sham-operated mice may contribute to the improvement of skilled locomotion requiring integration of spatiotemporal signals in the somatosensory cortex.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 583-583
Author(s):  
Svetlana Ukraintseva ◽  
Olivia Bagley ◽  
Hongzhe Duan ◽  
Deqing Wu ◽  
Igor Akushevich ◽  
...  

Abstract Our recent GWAS of a composite measure of physiological dysregulation (PD) in the Long Life Family Study (LLFS) found that the top genes associated with age-related changes in PD are involved in biological pathways relevant to maintaining neural networks and brain resilience. In our prior work, PD itself was linked to resilience-related traits. Alzheimer’s disease (AD) is a heterogeneous trait and it may involve an accelerated decline in resilience with age as a contributing factor. We proposed that genes associated with aging-changes in PD and brain resilience may contribute to AD risk. We investigated interactions between SNPs in such candidate genes with AD in LLFS and Health and Retirement Study (HRS). Our analysis revealed significant interactions between SNPs in UNC5C and other genes with AD, in both LLFS and HRS. These findings support roles of genetic interactions with UNC5C gene (implemented in axon growth and neuronal apoptosis) in AD.


Sign in / Sign up

Export Citation Format

Share Document