cranial neural crest cell
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 22 (22) ◽  
pp. 12453
Author(s):  
Hiroki Yoshioka ◽  
Goo Jun ◽  
Akiko Suzuki ◽  
Junichi Iwata

Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.5 compared to E13.5. Among them, overexpression of the miR-449 family (miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p) and miR-486b-5p resulted in reduced cell proliferation in primary mouse embryonic palatal mesenchymal (MEPM) cells and mouse cranial neural crest cell line O9-1. On the other hand, inhibitors of miR-130a-3p and miR-301a-3p significantly reduced cell proliferation in MEPM and O9-1 cells. Notably, we found that treatment with dexamethasone, a glucocorticoid known to induce CP in mice, suppressed miR-130a-3p expression in both MEPM and O9-1 cells. Moreover, a miR-130a-3p mimic could ameliorate the cell proliferation defect induced by dexamethasone through normalization of Slc24a2 expression. Taken together, our results suggest that miR-130-3p plays a crucial role in dexamethasone-induced CP in mice.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca Pagliaroli ◽  
Patrizia Porazzi ◽  
Alyxandra T. Curtis ◽  
Chiara Scopa ◽  
Harald M. M. Mikkers ◽  
...  

AbstractSubunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B+/− Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of the NANOG and SOX2 networks. In iPSCs, these enhancers are maintained active by ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A- to ARID1B-BAF, eliciting attenuation of the NANOG/SOX2 networks and triggering pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at the pluripotency enhancers throughout all stages of CNCC formation. This leads to persistent NANOG/SOX2 activity which impairs CNCC formation. Despite showing the typical neural crest signature (TFAP2A/SOX9-positive), ARID1B-haploinsufficient CNCCs are also aberrantly NANOG-positive. These findings suggest a connection between ARID1B mutations, neuroectoderm specification and a pathogenic mechanism for Coffin-Siris syndrome.


2021 ◽  
Author(s):  
Eric Van Otterloo ◽  
Kenneth Jones ◽  
Hamish Pike ◽  
Hong Li ◽  
Isaac Milanda ◽  
...  

The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2β, within the early embryonic ectoderm leads to major alterations in the mouse craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. The role of reduced Wnt signaling throughput in the mutant phenotype was further confirmed using reporter assays and rescue experiments involving Wnt1 ligand overexpression. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.


Author(s):  
Sharien Fitriasari ◽  
Paul A. Trainor

Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.


2021 ◽  
Author(s):  
Luca Pagliaroli ◽  
Patrizia Porazzi ◽  
Alyxandra Curtis ◽  
Harald Mikkers ◽  
Christian Freund ◽  
...  

The BAF complex modulates genome-wide chromatin accessibility. Specific BAF configurations have been shown to have functional consequences, and subunit switches are essential for cell differentiation. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause a neurodevelopmental disorder spectrum, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we reprogrammed ARID1B+/- Coffin-Siris patient-derived skin fibroblasts into iPSCs, and investigated cranial neural crest cell (CNCC) differentiation. We discovered a novel BAF configuration (ARID1B-BAF), which includes ARID1B, SMARCA4, and eight additional subunits. This novel version of BAF acts as a gate-keeper which ensures exit from pluripotency and commitment towards neural crest differentiation, by attenuating pluripotency enhancers of the SOX2 network. At the iPSC stage, these enhancers are maintained in active state by an ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A-BAF to ARID1B-BAF, eliciting attenuation of SOX2 enhancers and pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at pluripotency enhancers throughout CNCC differentiation. This correlates with aberrant SOX2 binding at pluripotency enhancers, and failure to reposition SOX2 at developmental enhancers. SOX2 dysregulation promotes upregulation of the NANOG network, impairing CNCC differentiation. ARID1B-BAF directly modulates NANOG expression upon differentiation cues. Intriguingly, the cells with the most prominent molecular phenotype in multiple experimental assays are derived from a patient with a more severe clinical impairment. These findings suggest a direct connection between ARID1B mutations, CNCC differentiation, and a pathogenic mechanism for Coffin-Siris syndrome.


Author(s):  
Bhaval Parmar ◽  
Urja Verma ◽  
Kashmira Khaire ◽  
Dhanush Danes ◽  
Suresh Balakrishnan

A recent study from our lab revealed that inhibition of cyclooxygenase-2 exclusively reduces the level of PGE2 amongst the prostanoids and hamper the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence the cranial neural crest cell (CNCC) migration were checked in chick embryo after inhibiting the COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1, CDH2, MSX1, and TGF-β, observed in the etoricoxib treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCC. The histological features and levels of FoxD3 as well as PCNA further consolidates the role of COX-2 in migration and survival of CNCC in developing embryo. The results of the current study indicate that the COX-2 plays a pivotal role in orchestrating the proliferation and migration of CNCC during embryonic development of chick.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Oscar Lopez-Nunez ◽  
Rita Alaggio ◽  
Ivy John ◽  
Andrea Ciolfi ◽  
Lucia Pedace ◽  
...  

MNTI is a rare tumor of indeterminate histogenesis and molecular signature. We performed methylation and copy number variation (CNV) profiles in patients with MNTI (n = 7) and PAT (n = 1) compared to the methylation brain tumor classifier v11b4 (BT-C) and the medulloblastoma (MB) classifier group 3/4 v1.0 (MB3/4-C). The patients’ mean age was 8 months (range: 4–48). The BT-C classified five MNTIs and one PAT (relapse) as class family MB-G3/G4, subclass group 3 (score: >0.9). The remaining two MNTIs and PAT (primary) were classified as class family plexus tumor, subclass pediatric (scores: >0.45). The MB3/4-C classified all MNTIs as high-risk MB-G3, Subtype II (score: >0.45). The primary PAT was classified as subtype III (score: 0.99) and its relapse as subtype II/III. MNTI and PAT clustered close to MB-G3. CNV analysis showed multiple rearrangements in one PAT and two MNTIs. The median follow-up was 54 months (four MNTIs in remission, one PAT died). In conclusion, we demonstrated that MNTI shares a homogenous methylation profile with MB-G3, and possibly with PAT. The role of a multipotent progenitor cell (i.e., early cranial neural crest cell) in their histogenesis and the influence of the anatomical site, tumor microenvironment, and other cytogenetic events in their divergent biologic behavior deserve further investigation.


2021 ◽  
Vol 22 (4) ◽  
pp. 1746
Author(s):  
Hiroki Yoshioka ◽  
Sai Shankar Ramakrishnan ◽  
Akiko Suzuki ◽  
Junichi Iwata

Cleft lip (CL) is one of the most common birth defects. It is caused by either genetic mutations or environmental factors. Recent studies suggest that environmental factors influence the expression of noncoding RNAs [e.g., microRNA (miRNA)], which can regulate the expression of genes crucial for cellular functions. In this study, we examined which miRNAs are associated with CL. Among 10 candidate miRNAs (miR-98-3p, miR-101a-3p, miR-101b-3p, miR-141-3p, miR-144-3p, miR-181a-5p, miR-196a-5p, miR-196b-5p, miR-200a-3p, and miR-710) identified through our bioinformatic analysis of CL-associated genes, overexpression of miR-181a-5p, miR-196a-5p, miR-196b-5p, and miR-710 inhibited cell proliferation through suppression of genes associated with CL in cultured mouse embryonic lip mesenchymal cells (MELM cells) and O9-1 cells, a mouse cranial neural crest cell line. In addition, we found that phenytoin, an inducer of CL, decreased cell proliferation through miR-196a-5p induction. Notably, treatment with a specific inhibitor for miR-196a-5p restored cell proliferation through normalization of expression of CL-associated genes in the cells treated with phenytoin. Taken together, our results suggest that phenytoin induces CL through miR-196a-5p induction, which suppresses the expression of CL-associated genes.


2021 ◽  
Author(s):  
Elizabeth A. Bearce ◽  
Benjamin Pratt ◽  
Erin Rutherford ◽  
Leslie Carandang ◽  
Laura Anne Lowery

AbstractCoordinated cell migration is critical during embryogenesis, as cells must leave their point of origin, navigate a complex barrage of signals, and accurately position themselves to facilitate correct tissue and organ formation. The cell motility process relies on dynamic interactions of the F-actin and microtubule (MT) cytoskeletons. Our work focuses on how one MT plus-end regulator, Transforming Acidic Coiled-Coil 3 (Tacc3), can impact migration of cranial neural crest cells in Xenopus laevis. We previously demonstrated that tacc3 expression is expressed in cranial neural crest cells, and that Tacc3 can function as a MT plus-end tracking protein to regulate MT growth velocities. Here, we demonstrate that manipulation of Tacc3 protein levels is sufficient to alter cranial neural crest cell velocity in vitro. Tacc3 overexpression drives increased single-cell migration velocities, while Tacc3 KD results in reduced cell velocity and defective explant dispersion. We also show that Tacc3 can have spatially-enhanced effects on MT plus-end growth velocities as well as effects on focal adhesion remodeling. Together, we demonstrate that Tacc3 can facilitate neural crest cell motility through spatially-enhanced cytoskeletal remodeling, which may underlie the enhanced metastatic potential of Tacc3-overexpressing tumor cells.


Bone ◽  
2021 ◽  
Vol 143 ◽  
pp. 115657
Author(s):  
Archana Kamalakar ◽  
Jay M. McKinney ◽  
Daniel Salinas Duron ◽  
Angelica M. Amanso ◽  
Samir A. Ballestas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document