cell migration
Recently Published Documents


TOTAL DOCUMENTS

15595
(FIVE YEARS 3466)

H-INDEX

224
(FIVE YEARS 21)

2022 ◽  
Vol 12 (3) ◽  
pp. 461-470
Author(s):  
Gang Quan ◽  
Bo Ren ◽  
Jian Xu ◽  
Jie Zhou ◽  
Guo Wu ◽  
...  

<sec> <title>Objective:</title> This study was designed to probe the influence and mechanism of lncRNA HOTAIR on migration, apoptosis and proliferation of hepatocellular carcinoma (HCC) cells. </sec> <sec> <title>Methods:</title> We evaluated LncRNA HOTAIR expression in HCC tissues and adjacent tissues, and serum of HCC patients and healthy controls. Later, we knocked down lncRNA HOTAIR, and utilized CCK-8 to determine Hep3B cell proliferation, flow cytometry for prospecting Hep3B cell apoptosis, and cell scratch assay for observing Hep3B cell migration.We anticipated the direct target of lncRNA HOTAIR, and adopted luciferase reporter assay to verify. Moreover, we inhibitedmiR-126-5p expression, and rescue experiment for evaluating the influence of si-HOTAIR+miR-126-5p inhibitors on Hep3B cell migration, apoptosis as well as proliferation. </sec> <sec> <title>Results:</title> Our results showed that lncRNA HOTAIR expression in tumor tissues and serum was significantly increased. Moreover, lncRNA HOTAIR inhibition significantly decreased the Hep3B cell proliferation rate, elevated Hep3B cell apoptosis rate, and inhibited Hep3B cell migration. Luciferase reporter assay suggested that miR-126-5p was the direct target of lncRNA HOTAIR. Furthermore, co-transfection of si-HOTAIR+miR-126-5p inhibitor could diminishthe effects of HOTAIR silencing on apoptosis, proliferation and migration. </sec> <sec> <title>Conclusion:</title> Silencing of lncRNA-HOTAIR can inhibit the HCC cell migration and proliferation, and increase the apoptosis by up-regulating miR-126-5p expression. </sec>


2022 ◽  
Vol 12 (5) ◽  
pp. 1002-1007
Author(s):  
Donghua Wang ◽  
Xiaoli Liu ◽  
Lirong Cao ◽  
Shixiong Gong ◽  
Yi He ◽  
...  

Our study aimed to discuss the mechanism of miR-486-3p in controlling the apoptosis of endometrial carcinoma (EC) cells. EC cells were divided into NC group, miR-486-3p mimic and miR-486-3p inhibitor group followed by analysis of miR-486-3p level by Real-time PCR, cell proliferation by spectrophotometric method, apoptosis by FCM, cell migration and invasion by Transwell analysis. EC cells showed reduced miR-486-3p level. The EC malignant biological behaviors could be prompted through retraining miR-486-3p level with increased EC cell invasive capacity. DDR1 was a target of miR-486-3p. The variation of tumor activity could be regulated through controlling DDR1 expression. In conclusion, the apoptotic and invasive characteristic of EC cells are restrained after overexpression of miR-486-3p in EC cells through targeting DDR1, indicating that miR-486-3p could be considered to be one kind of brand-new target for the treatment of EC.


2022 ◽  
Vol 12 (2) ◽  
pp. 393-398
Author(s):  
Ming Yan ◽  
Ringxing Bai ◽  
Hongyi Zhang ◽  
Wenmao Yan

SDF-1α activity is closely related to information transmission and cell migration when contributing to lymphatic metastasis in various tumors. Herein, we explored the interaction among SDF-1α, CXCR4 and PI3K/Akt signaling pathway in gastric cancer (GC) and their roles in this disorder. Human GC cells KATO-III and BMSCs were co-cultured without contact. GC cells were transfected with SDF-1α, CXCR4 inhibitor, and PI3K inhibitor. After examining the efficiency of transfection, cell migration was evaluated using Transwell chamber, and expression SDF-1α, CD133, and CXCR4 was determined by RT-qPCR. With transfection rate of 98%, the number of migrated cells reduced upon inhibition of CXCR4 and PI3K. Luciferase activity in 565 nm are high than CXCR4 inhibition group. (p < 0.05). Likewise, up-regulation of SDF-1α increased the expression of SDF-1 (0.825±0.061), CD133 (0.875±0.058), CXCR4 (0.801±0.052), and Akt (0.852±0.062), compared to the blank group, CXCR4 inhibition group and PI3K inhibition group (p < 0.05). Down-regulation of CXCR4 and PI3K, however, decreased the expression insignificantly (p > 0.05). Collectively, up-regulation of SDF-1α activates CXCR4 signaling pathway of BMSCs and stimulates its downstream PI3K/Akt signaling pathway and and increases the expression of CD133, thereby promoting malignant behaviors of GC cells.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 145
Author(s):  
Cristina Almeida ◽  
Ana Luísa Teixeira ◽  
Francisca Dias ◽  
Vera Machado ◽  
Mariana Morais ◽  
...  

Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebeca Diaz ◽  
Nils M. Kronenberg ◽  
Angela Martinelli ◽  
Philipp Liehm ◽  
Andrew C. Riches ◽  
...  

AbstractFollowing its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell–substrate force regulation.


2022 ◽  
Author(s):  
Jing Peng ◽  
Danhua Zhang

Objective: The present research set out to ascertain the roles of CCL21 and CBS in breast cancer (BC) cell biological behaviors and the relationship of CCL21 and CBS expression with the clinicopathological features of patients with BC. Methods: Immunohistochemistry of CCL21 or CBS was performed in 18 intraductal cancer tissues, 124 invasive BC tissues, 50 paraneoplastic tissues, 50 lobular hyperplasia tissues, and 30 normal breast tissues. For cell experiments, two human BC cell lines (MDA-MB-231 and MCF-7) and a human breast epithelial cell line (MCF-10A) were utilized to detect the expression of CCL21 and CBS. After loss- and gain-of-function assays for CCL21 or CBS, the expression of CBS and CCL21 was measured by qRT-PCR and Western blot. Additionally, BC cell proliferation was assessed by MTT assay and EdU staining, and BC cell migration was determined by scratch test and Transwell assay. Results: In the clinical data, the positive rate of CCL21 or CBS was significantly higher in invasive BC tissues than in intraductal BC tissues, lobular hyperplasia tissues, paraneoplastic tissues, and normal breast tissues (P < 0.05 or P < 0.01). CBS or CCL21 expression shared close association with the clinicopathological characteristic and the poor prognosis of BC patients. In cell experiments, overexpression of CCL21 or CBS enhanced the proliferative and migratory abilities of BC cells. Conclusion: CCL21 and CBS promoted BC cell migration and proliferation. CCL21 or CBS expression was strongly related to the poor prognosis of BC patients.


2022 ◽  
Author(s):  
Jiayan Wu ◽  
Hongquan Zhu ◽  
Jiandong Yu ◽  
Zhiping Chen ◽  
Zeyu Lin ◽  
...  

Abstract OBJECTIVE: Long non-coding RNA HOXB-AS3 has been implicated in tumor progression in a variety of carcinomas. However, its biological role in gallbladder cancer (GBC) is unknown. The biological function and underlying mechanism of the lncRNA HOXB-AS3 for GBC were investigated in this study.MATERIALS AND METHODS: To investigate the function of lncRNA HOXB-AS3 in GBC, the level of lncRNA HOXB-AS3 in GBC cells was detected by quantitative reverse-transcription polymerase chain reaction. The cell viability was tested by cell counting kit-8 assay and colony formation assay. Flow cytometry was performed to investigate cell apoptosis and cell cycle. In addition, cell migration ability was assessed by wound healing assay and cell invasion ability by transwell invasion assay. RESULTS: It was found that HOXB-AS3 was obviously elevated in GBC tissues and cells. However, inhibition of HOXB-AS3 could depress NOZ and GBC-SD cell viability as well as induce cell apoptosis. Also, the gallbladder cancer cell cycle was blocked in the G1 phase. Meanwhile, NOZ and GBC-SD cell migration, invasion, and epithelial-mesenchymal transition were obviously suppressed by knockdown of HOXB-AS3. What is more, we found that HOXB-AS3 might promote gallbladder progress by activating the MEK/ERK pathway.CONCLUSION: The results show that lncRNA HOXB-AS3 serves as a key regulator in GBC progression, which provides a new treatment strategy for GBC.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Seigo Usuki ◽  
Noriko Tamura ◽  
Tomohiro Tamura ◽  
Kohei Yuyama ◽  
Daisuke Mikami ◽  
...  

Histamines suppress epidermal keratinocyte differentiation. Previously, we reported that konjac ceramide (kCer) suppresses histamine-stimulated cell migration of HaCaT keratinocytes. kCer specifically binds to Nrp1 and does not interact with histamine receptors. The signaling mechanism of kCer in HaCaT cells is also controlled by an intracellular signaling cascade activated by the Sema3A-Nrp1 pathway. In the present study, we demonstrated that kCer treatment induced HaCaT keratinocyte differentiation after migration of immature cells. kCer-induced HaCaT cell differentiation was accompanied by some features of keratinocyte differentiation markers. kCer induced activating phosphorylation of p38MAPK and c-Fos, which increased the protein levels of involucrin that was the latter differentiation marker. In addition, we demonstrated that the effects of both kCer and histamines are regulated by an intracellular mechanism of Rac1 activation/RhoA inhibition downstream of the Sema3A/Nrp1 receptor and histamine/GPCR pathways. In summary, the effects of kCer on cell migration and cell differentiation are regulated by cascade crosstalk between downstream Nrp1 and histamine-GPCR pathways in HaCaT cells.


2022 ◽  
Author(s):  
Ezra Lencer ◽  
Rytis Prekeris ◽  
Kristin Artinger

The immunoglobin superfamily members cdon and boc are transmembrane proteins implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration further suggest that cdon/boc may play additional functions in regulating directed cell movements during development. Here we use novel and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single cdon or boc mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon/boc mutant embryos. We further show that this neural crest migration phenotype is associated with defects to the differentiation of slow-twitch muscle cells, and that this slow-twitch muscle phenotype is a consequence of reduced hedgehog signaling in mutant fish. While neural crest migratory ability is not affected in double mutant embryos, neural crest directionality is severely affected. These data suggest that neural crest migration defects are likely to be secondary to defects in slow-twitch muscle differentiation. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and provide a foundation for using zebrafish to further study the function of these hedgehog receptor paralogs.


Sign in / Sign up

Export Citation Format

Share Document