scholarly journals Homann Stagnation Point Flow and Heat Transfer of Hybrid Nanofluids Over a Permeable Radially Stretching/Shrinking Sheet

Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Mohd Hisyam Ariff ◽  
Ioan Pop

The steady two-dimensional Homan stagnation point flow and heat transfer of water base hybrid nanofluids (Al2O3 & Cu) over a permeable radially stretching/shrinking sheet have been studied. The similarity variables are introduced to transform the partial differential equations of the model into the ordinary differential equations. Numerical findings and dual solutions have been carried out by implementing the bvp4c code through MATLAB software. The most prominent effect is illustrated in the boundary layer thickness where the velocity profile increases upon the increment of the suction intensity but decreases in the temperature profile. Besides, the reduced Nusselt number also decreases as enlarging the value of copper and alumina nanoparticle volume fraction. The analysis of the first and second solutions are presented graphically with critical values as well as the detail discussions on the effects of the other involving parameters.

2019 ◽  
Vol 29 (8) ◽  
pp. 2588-2605 ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Ioan Pop

Purpose The purpose of this paper is to theoretically investigate the unsteady separated stagnation-point flow and heat transfer past an impermeable stretching/shrinking sheet in a copper (Cu)-water nanofluid using the mathematical nanofluid model proposed by Tiwari and Das. Design/methodology/approach A similarity transformation is used to reduce the governing partial differential equations to a set of nonlinear ordinary (similarity) differential equations which are then solved numerically using the function bvp4c from Matlab for different values of the governing parameters. Findings It is found that the solution is unique for stretching case; however, multiple (dual) solutions exist for the shrinking case. Originality/value The authors believe that all numerical results are new and original, and have not been published elsewhere.


Open Physics ◽  
2011 ◽  
Vol 9 (5) ◽  
Author(s):  
Roslinda Nazar ◽  
Mihaela Jaradat ◽  
Norihan Arifin ◽  
Ioan Pop

AbstractIn this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1649
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip condition, the velocity slip condition is considered in this study. By incorporating verified similarity transformations, the differential equations together with their partial derivatives are changed into ordinary differential equations. Throughout the MATLAB operating system, the simplified mathematical model is clarified by employing the bvp4c procedure. The above-proposed approach is capable of producing non-uniqueness solutions when adequate initial assumptions are provided. The findings revealed that the skin friction coefficient intensifies in conjunction with the local Nusselt number by adding up the nanoparticles volume fraction. The occurrence of velocity slip at the boundary reduces the coefficient of skin friction; however, an upward trend is exemplified in the rate of heat transfer. The results also signified that, unlike the parameter of velocity slip, the increment in the unsteady parameter conclusively increases the coefficient of skin friction, and an upsurge attribution in the heat transfer rate is observed resulting from the increment of Biot number. The findings are evidenced to have dual solutions, which inevitably contribute to stability analysis, hence validating the feasibility of the first solution.


Author(s):  
M M Rahman ◽  
Teodor Grosan ◽  
Ioan Pop

Purpose – The laminar two-dimensional stagnation-point flow and heat transfer of a viscous incompressible nanofluid obliquely impinging on a shrinking surface is formulated as a similarity solution of the Navier-Stokes, energy and concentration equations. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The effect of the dimensionless strain rate, shrinking parameter, Brownian motion parameter and thermophoresis parameter on the flow, temperature and nanoparticle volume fraction is investigated in details. The paper aims to discuss these issues. Design/methodology/approach – The transformed system of ordinary differential equations was solved using the function bvp4c from Matlab. The relative tolerance was set to 10−10. Findings – It is found that dimensionless strain rate and shrinking parameter causes a shift in the position of the point of zero skin friction along the stretching sheet. Obliquity of the flow toward the surface increases as the strain rate intensifies. The results indicate that dual solutions exist for the opposing flow case. Research limitations/implications – The problem is formulated for an incompressible nanofluid with no chemical reactions, dilute mixture, negligible viscous dissipation and negligible radiative heat transfer assuming nanoparticles and base fluid are locally in thermal equilibrium. Beyond the critical point λ c to obtain further solutions, the full basic partial differential equations have to be solved. Originality/value – The present results are original and new for the oblique stagnation-point flow of a nanofluid past a shrinking sheet. Therefore, this study would be important for the researchers working in the relatively new area of nanofluids in order to become familiar with the flow behavior and properties of such nanofluids.


2014 ◽  
Vol 92 (12) ◽  
pp. 1703-1708 ◽  
Author(s):  
Kishore Kumar Ch. ◽  
Shankar Bandari

The present analysis deals with the study of two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow of a nanofluid towards a melting stretching sheet. Using similarity transformations, the governing differential equations were transformed into coupled, nonlinear ordinary differential equations, which were then solved numerically by using the Runge–Kutta fourth-order method along with the shooting technique for two types of nanoparticles namely copper (Cu) and silver (Ag) in the water-based fluid with Prandtl number Pr = 6.2, the skin friction coefficient, the local Nusselt number, the velocity and the temperature profiles are presented graphically and discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. Suali ◽  
N. M. A. Nik Long ◽  
N. M. Ariffin

The unsteady stagnation point flow and heat transfer over a stretching/shrinking sheet with suction/injection is studied. The governing partial differential equations are converted into nonlinear ordinary differential equations using a similarity transformation and solved numerically. Both stretching and shrinking cases are considered. Results for the skin friction coefficient, local Nusselt number, velocity, and temperature profiles are presented for different values of the governing parameters. It is found that the dual solutions exist for the shrinking case, whereas the solution is unique for the stretching case. Numerical results show that the range of dual solutions increases with mass suction and decreases with mass injection.


Author(s):  
Ioan Pop ◽  
Kohi Naganthran ◽  
Roslinda Nazar

Purpose – The purpose of this paper is to analyse numerically the steady stagnation-point flow of a viscous and incompressible fluid over continuously non-aligned stretching or shrinking surface in its own plane in a water-based nanofluid which contains three different types of nanoparticles, namely, Cu, Al2O3 and TiO2. Design/methodology/approach – Similarity transformation is used to convert the system of boundary layer equations which are in the form of partial differential equations into a system of ordinary differential equations. The system of similarity governing equations is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in Matlab software. Findings – Unique solution exists when the surface is stretched and dual solutions exist as the surface shrunk. For the dual solutions, stability analysis has revealed that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. The effect of non-alignment is huge for the shrinking surface which is in contrast with the stretching surface. Practical implications – The results obtained can be used to explain the characteristics and applications of nanofluids, which are widely used as coolants, lubricants, heat exchangers and micro-channel heat sinks. This problem also applies to some situations such as materials which are manufactured by extrusion, production of glass-fibre and shrinking balloon. In this kind of circumstance, the rate of cooling and the stretching/shrinking process play an important role in moulding the final product according to preferable features. Originality/value – The present results are original and new for the study of fluid flow and heat transfer over a stretching/shrinking surface for the problem considered by Wang (2008) in a viscous fluid and extends to nanofluid by using the Tiwari and Das (2007) model.


2018 ◽  
Vol 28 (11) ◽  
pp. 2650-2663 ◽  
Author(s):  
Fatinnabila Kamal ◽  
Khairy Zaimi ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to analyze the behavior of the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet in the presence of the viscous dissipation and heat source effects.Design/methodology/approachThe governing partial differential equations are converted into ordinary differential equations by similarity transformations before being solved numerically using the bvp4c function built in Matlab software. Effects of suction/injection parameter and heat source parameter on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented in the forms of tables and graphs. A temporal stability analysis will be conducted to verify which solution is stable for the dual solutions exist for the shrinking case.FindingsThe analysis indicates that the skin friction coefficient and the local Nusselt number as well as the velocity and temperature were influenced by suction/injection parameter. In contrast, only the local Nusselt number, which represents heat transfer rate at the surface, was affected by heat source effect. Further, numerical results showed that dual solutions were found to exist for the certain range of shrinking case. Then, the stability analysis is performed, and it is confirmed that the first solution is linearly stable and has real physical implication, while the second solution is not.Practical implicationsIn practice, the study of the steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in the presence of heat source effect is very crucial and useful. The problems involving fluid flow over stretching or shrinking surfaces can be found in many industrial manufacturing processes such as hot rolling, paper production and spinning of fibers. Owing to the numerous applications, the study of stretching/shrinking sheet was subsequently extended by many authors to explore various aspects of skin friction coefficient and heat transfer in a fluid. Besides that, the study of suction/injection on the boundary layer flow also has important applications in the field of aerodynamics and space science.Originality/valueAlthough many studies on viscous fluid has been investigated, there is still limited discoveries found on the heat source and suction/injection effects. Indeed, this paper managed to obtain the second (dual) solutions and stability analysis is performed. The authors believe that all the results are original and have not been published elsewhere.


2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


Sign in / Sign up

Export Citation Format

Share Document