scholarly journals Unsteady Stagnation Point Flow of Hybrid Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet with Velocity Slip

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1649
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip condition, the velocity slip condition is considered in this study. By incorporating verified similarity transformations, the differential equations together with their partial derivatives are changed into ordinary differential equations. Throughout the MATLAB operating system, the simplified mathematical model is clarified by employing the bvp4c procedure. The above-proposed approach is capable of producing non-uniqueness solutions when adequate initial assumptions are provided. The findings revealed that the skin friction coefficient intensifies in conjunction with the local Nusselt number by adding up the nanoparticles volume fraction. The occurrence of velocity slip at the boundary reduces the coefficient of skin friction; however, an upward trend is exemplified in the rate of heat transfer. The results also signified that, unlike the parameter of velocity slip, the increment in the unsteady parameter conclusively increases the coefficient of skin friction, and an upsurge attribution in the heat transfer rate is observed resulting from the increment of Biot number. The findings are evidenced to have dual solutions, which inevitably contribute to stability analysis, hence validating the feasibility of the first solution.

Open Physics ◽  
2011 ◽  
Vol 9 (5) ◽  
Author(s):  
Roslinda Nazar ◽  
Mihaela Jaradat ◽  
Norihan Arifin ◽  
Ioan Pop

AbstractIn this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0.


2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Mohd Hisyam Ariff ◽  
Ioan Pop

The steady two-dimensional Homan stagnation point flow and heat transfer of water base hybrid nanofluids (Al2O3 & Cu) over a permeable radially stretching/shrinking sheet have been studied. The similarity variables are introduced to transform the partial differential equations of the model into the ordinary differential equations. Numerical findings and dual solutions have been carried out by implementing the bvp4c code through MATLAB software. The most prominent effect is illustrated in the boundary layer thickness where the velocity profile increases upon the increment of the suction intensity but decreases in the temperature profile. Besides, the reduced Nusselt number also decreases as enlarging the value of copper and alumina nanoparticle volume fraction. The analysis of the first and second solutions are presented graphically with critical values as well as the detail discussions on the effects of the other involving parameters.


Author(s):  
Nur Syazana Anuar ◽  
Norfifah Bachok ◽  
Norihan Md Arifin ◽  
Haliza Rosali

The steady, laminar, stagnation point flow of hybrid nanofluid past a nonlinearly stretching and shrinking sheet is studied. Hybrid nanofluid is regarded by disseminated two distinct nano-sized particles, silver (Ag) and copper oxide (CuO) in pure water. Similarity technique was used for the transformation of partial differential equations (PDEs) into an ordinary differential equations (ODEs). Obtained ODEs were solved using Matlab’s built in function (bvp4c). The results of important governing parameters which are nonlinear parameter, stretching/shrinking parameter and nanoparticle volume fraction are evaluated and discussed in graphical and tabular form for the velocity and temperature profiles, along with local skin friction, local Nusselt number. Nonunique solutions (first and second branch) are visible for some limit of shrinking parameter. It is noticed that nonlinear parameter hastens flow separations. Hence, a stability analysis is executed to identify which solutions are stable and physically feasible.


Author(s):  
M M Rahman ◽  
Teodor Grosan ◽  
Ioan Pop

Purpose – The laminar two-dimensional stagnation-point flow and heat transfer of a viscous incompressible nanofluid obliquely impinging on a shrinking surface is formulated as a similarity solution of the Navier-Stokes, energy and concentration equations. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The effect of the dimensionless strain rate, shrinking parameter, Brownian motion parameter and thermophoresis parameter on the flow, temperature and nanoparticle volume fraction is investigated in details. The paper aims to discuss these issues. Design/methodology/approach – The transformed system of ordinary differential equations was solved using the function bvp4c from Matlab. The relative tolerance was set to 10−10. Findings – It is found that dimensionless strain rate and shrinking parameter causes a shift in the position of the point of zero skin friction along the stretching sheet. Obliquity of the flow toward the surface increases as the strain rate intensifies. The results indicate that dual solutions exist for the opposing flow case. Research limitations/implications – The problem is formulated for an incompressible nanofluid with no chemical reactions, dilute mixture, negligible viscous dissipation and negligible radiative heat transfer assuming nanoparticles and base fluid are locally in thermal equilibrium. Beyond the critical point λ c to obtain further solutions, the full basic partial differential equations have to be solved. Originality/value – The present results are original and new for the oblique stagnation-point flow of a nanofluid past a shrinking sheet. Therefore, this study would be important for the researchers working in the relatively new area of nanofluids in order to become familiar with the flow behavior and properties of such nanofluids.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 549
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

There has been significant interest in exploring a stagnation point flow due to its numerous potential uses in engineering applications such as cooling of nuclear reactors. Hence, this study proposed a numerical analysis on the unsteady magnetohydrodynamic (MHD) mixed convection at three-dimensional stagnation point flow in Al2O3–Cu/H2O hybrid nanofluid over a permeable sheet. The ordinary differential equations are accomplished by simplifying the governing partial differential equations through suitable similarity transformation. The numerical computation is established by the MATLAB system software using the bvp4c technique. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The influence of certain functioning parameters is inspected, and notable results exposed that the rate of heat transfer is exaggerated along with the skin friction coefficient while the suction/injection and magnetic parameters are intensified. The results also signified that the rise in the volume fraction of the nanoparticle and the decline of the unsteadiness parameter demonstrates a downward attribution towards the heat transfer performance and skin friction coefficient. Conclusively, the observations are confirmed to have multiple solutions, which eventually contribute to an investigation of the analysis of the solution stability, thereby justifying the viability of the first solution.


2018 ◽  
Vol 28 (11) ◽  
pp. 2650-2663 ◽  
Author(s):  
Fatinnabila Kamal ◽  
Khairy Zaimi ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to analyze the behavior of the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet in the presence of the viscous dissipation and heat source effects.Design/methodology/approachThe governing partial differential equations are converted into ordinary differential equations by similarity transformations before being solved numerically using the bvp4c function built in Matlab software. Effects of suction/injection parameter and heat source parameter on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented in the forms of tables and graphs. A temporal stability analysis will be conducted to verify which solution is stable for the dual solutions exist for the shrinking case.FindingsThe analysis indicates that the skin friction coefficient and the local Nusselt number as well as the velocity and temperature were influenced by suction/injection parameter. In contrast, only the local Nusselt number, which represents heat transfer rate at the surface, was affected by heat source effect. Further, numerical results showed that dual solutions were found to exist for the certain range of shrinking case. Then, the stability analysis is performed, and it is confirmed that the first solution is linearly stable and has real physical implication, while the second solution is not.Practical implicationsIn practice, the study of the steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in the presence of heat source effect is very crucial and useful. The problems involving fluid flow over stretching or shrinking surfaces can be found in many industrial manufacturing processes such as hot rolling, paper production and spinning of fibers. Owing to the numerous applications, the study of stretching/shrinking sheet was subsequently extended by many authors to explore various aspects of skin friction coefficient and heat transfer in a fluid. Besides that, the study of suction/injection on the boundary layer flow also has important applications in the field of aerodynamics and space science.Originality/valueAlthough many studies on viscous fluid has been investigated, there is still limited discoveries found on the heat source and suction/injection effects. Indeed, this paper managed to obtain the second (dual) solutions and stability analysis is performed. The authors believe that all the results are original and have not been published elsewhere.


2019 ◽  
Vol 29 (8) ◽  
pp. 2588-2605 ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Ioan Pop

Purpose The purpose of this paper is to theoretically investigate the unsteady separated stagnation-point flow and heat transfer past an impermeable stretching/shrinking sheet in a copper (Cu)-water nanofluid using the mathematical nanofluid model proposed by Tiwari and Das. Design/methodology/approach A similarity transformation is used to reduce the governing partial differential equations to a set of nonlinear ordinary (similarity) differential equations which are then solved numerically using the function bvp4c from Matlab for different values of the governing parameters. Findings It is found that the solution is unique for stretching case; however, multiple (dual) solutions exist for the shrinking case. Originality/value The authors believe that all numerical results are new and original, and have not been published elsewhere.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 784 ◽  
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

The hybrid nanofluid under the influence of magnetohydrodynamics (MHD) is a new interest in the industrial sector due to its applications, such as in solar water heating and scraped surface heat exchangers. Thus, the present study accentuates the analysis of an unsteady three-dimensional MHD non-axisymmetric Homann stagnation point flow of a hybrid Al2O3-Cu/H2O nanofluid with stability analysis. By employing suitable similarity transformations, the governing mathematical model in the form of the partial differential equations are simplified into a system of ordinary differential equations. The simplified mathematical model is then solved numerically by the Matlab solver bvp4c function. This solving approach was proficient in generating more than one solution when good initial guesses were provided. The numerical results presented significant influences on the rate of heat transfer and fluid flow characteristics of a hybrid nanofluid. The rate of heat transfer and the trend of the skin friction coefficient improve with the increment of the nanoparticles’ concentration and the magnetic parameter; however, they deteriorate when the unsteadiness parameter increases. In contrast, the ratio of the escalation of the ambient fluid strain rate to the plate was able to adjourn the boundary layer separation. The dual solutions (first and second solutions) are obtainable when the surface of the sheet shrunk. A stability analysis is carried out to justify the stability of the dual solutions, and hence the first solution is seen as physically reliable and stable, while the second solution is unstable.


Sign in / Sign up

Export Citation Format

Share Document