Updating of a Finite Element Model with a Damping Effect Using Frequency Response Functions

2002 ◽  
Vol 26 (5) ◽  
pp. 872-880
Author(s):  
Geon-Myeong Lee ◽  
Hyeong-Seok Lee ◽  
Han-Hui Lee
2021 ◽  
pp. 107754632199693
Author(s):  
Mohammad Hadi Jalali ◽  
D. Geoff Rideout

Interactions between cable and structure affect the modal properties of cabled structures such as overhead electricity transmission and distribution line systems. Modal properties of a single in-service pole are difficult to determine. A frequency response function of a pole impacted with a modal hammer will contain information about not only the pole but also the conductors and adjacent poles connected thereby. This article presents a generally applicable method to extract modal properties of a single structural element, within an interacting system of cables and structures, with particular application to electricity poles. A scalable experimental lab-scale pole-line consisting of a cantilever beam and stranded cable and a more complex system consisting of three cantilever beams and a stranded cable are used to validate the method. The frequency response function of a cantilever (“pole”) is predicted by substructural decoupling of measured cable dynamics (known frequency response function matrix) from the measured response of the assembled cable–beam system (known frequency response function matrix). Various amounts of sag can be present in the cable. Comparison of the estimated and directly obtained pole frequency response functions show good agreement, demonstrating that the method can be used in cabled structures to obtain modal properties of an individual structural element with the effects of cables and adjacent structural elements filtered out. A frequency response function–based finite element model updating is then proposed to overcome the practical limitation of accessing some components of the real-world system for mounting sensors. Frequency response functions corresponding to inaccessible points are generated based on the measured frequency response functions corresponding to accessible points. The results verify that the frequency response function–based finite element model updating can be used for substructural decoupling of systems in which some essential points, such as coupling points, are inaccessible for direct frequency response function measurement.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hong Yin ◽  
Jingjing Ma ◽  
Kangli Dong ◽  
Zhenrui Peng ◽  
Pan Cui ◽  
...  

Model updating in structural dynamics has attracted much attention in recent decades. And high computational cost is frequently encountered during model updating. Surrogate model has attracted considerable attention for saving computational cost in finite element model updating (FEMU). In this study, a model updating method using frequency response function (FRF) based on Kriging model is proposed. The optimal excitation point is selected by using modal participation criterion. Initial sample points are chosen via design of experiment (DOE), and Kriging model is built using the corresponding acceleration frequency response functions. Then, Kriging model is improved via new sample points using mean square error (MSE) criterion and is used to replace the finite element model to participate in optimization. Cuckoo algorithm is used to obtain the updating parameters, where the objective function with the minimum frequency response deviation is constructed. And the proposed method is applied to a plane truss model FEMU, and the results are compared with those by the second-order response surface model (RSM) and the radial basis function model (RBF). The analysis results showed that the proposed method has good accuracy and high computational efficiency; errors of updating parameters are less than 0.2%; damage identification is with high precision. After updating, the curves of real and imaginary parts of acceleration FRF are in good agreement with the real ones.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


Sign in / Sign up

Export Citation Format

Share Document