frequency response function
Recently Published Documents


TOTAL DOCUMENTS

648
(FIVE YEARS 134)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 105 (1) ◽  
pp. 003685042110644
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Muhammad Ahsan ◽  
Syed A Zilqurnain Naqvi ◽  
Asif Israr

Low-severity multiple damage detection relies on sensing minute deviations in the vibrational or dynamical characteristics of the structure. The problem becomes complicated when the reference vibrational profile of the healthy structure and corresponding input excitation, is unavailable as frequently experienced in real-life scenarios. Detection methods that require neither undamaged vibrational profile (baseline-free) nor excitation information (output-only) constitute state-of-art in structural health monitoring. Unfortunately, their efficacy is ultimately limited by non-ideal input excitation masking crucial attributes of system response such as resonant frequency peaks beyond first (few) natural frequency(ies) which can better resolve the issue of multiple damage detection. This study presents an improved frequency response function curvature method which is both baseline-free and output-only. It employs the cepstrum technique to eliminate [Formula: see text] decay of higher resonance peaks caused by the temporal spread of real impulse excitation. Long-pass liftering screens out the bulk of low-frequency sensor noise along with the excitation. With more visible resonant peaks, the cepstrum purified frequency response functions (regenerated frequency response functions) register finer deviation from an estimated baseline frequency response function and yield an accurate damage index profile. The simulation and experimental results on the beam show that the proposed method can successfully locate multiple damages of severity as low as 5%.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Maksym Shykhalieiev ◽  
Vadim Medvedev

Finite element method of simulating frequency response function (FRF) for boring tool in LS-Dyna solver is investigated in this work. Nowadays, computer numerical simulation allows to obtain FRF using different materials model with high precision compared to real experiments with sensors like impact hammer testing. This function is used in construction of stability lobe diagrams that allows operator of machining center to avoid chatter self-excited vibrations. Such vibration is led to decreasing of productivity and quality in cutting of metals and other materials. Amplitude and phase angle for the model is obtained from LS-Dyna result interpreter, that reads binary files, created during simulation by the program. Amplitude and phase angle of frequency response function are depending on dynamic stiffness of machining system. Real and imaginary part of frequency response function have been obtained during simulation. With luck of dynamic stiffness amplitudes of response increases.    


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2239
Author(s):  
Wuchao Wang ◽  
Haixia Gong ◽  
Liquan Wang ◽  
Feihong Yun

The top-tensioned riser is an important equipment in offshore oil and gas development. The hydro-pneumatic tensioner is an essential device to ensure the safety of the top-tensioned riser. To investigate the dynamic performance of the marine platform hydro-pneumatic tensioner, this paper proposed a first-order Taylor approximation method and created the frequency response function of the hydro-pneumatic tensioner. According to the frequency response function, the hydro-pneumatic tensioner is a first-order spring-mass system. With the given parameters, the system stiffness coefficient is 66.1 kN/m, the natural annular frequency is 20.99 rad/s and the damping ratio is 2.23 × 10−4. The effects of the high-pressure accumulator, low-pressure accumulator, hydraulic cylinder and pipeline design parameters on the stiffness coefficient, natural annular frequency and damping ratio are analyzed. The stiffness coefficient can be increased by (1) increasing the high-pressure accumulator pressure and reducing the high-pressure accumulator volume; (2) increasing the pressure of the low-pressure accumulator and reducing the low-pressure accumulator volume; (3) increasing the piston diameter; and vice versa. The natural annular frequency can be increased by: (1) increasing the high-pressure accumulator pressure and reducing the high-pressure accumulator volume; (2) increasing the pressure of the low-pressure accumulator and reducing the low-pressure accumulator volume; (3) increasing the piston diameter; and vice versa. The damping ratio can be increased by increasing the pipeline length and reducing the pipeline inner diameter.


Sign in / Sign up

Export Citation Format

Share Document