model calibration
Recently Published Documents


TOTAL DOCUMENTS

1871
(FIVE YEARS 529)

H-INDEX

61
(FIVE YEARS 8)

2022 ◽  
Vol 165 ◽  
pp. 108284
Author(s):  
Yuan Tian ◽  
Manuel Arias Chao ◽  
Chetan Kulkarni ◽  
Kai Goebel ◽  
Olga Fink

2022 ◽  
pp. 1-39

Abstract Uncertainty in climate projections is large as shown by the likely uncertainty ranges in Equilibrium Climate Sensitivity (ECS) of 2.5-4K and in the Transient Climate Response (TCR) of 1.4-2.2K. Uncertainty in model projections could arise from the way in which unresolved processes are represented, the parameter values used, or the targets for model calibration. We show that, in two climate model ensembles which were objectively calibrated to minimise differences from observed large scale atmospheric climatology, uncertainties in ECS and TCR are about two to six times smaller than in the CMIP5 or CMIP6 multi-model ensemble. We also find that projected uncertainties in surface temperature, precipitation and annual extremes are relatively small. Residual uncertainty largely arises from unconstrained sea-ice feedbacks. The 20+ year old HadAM3 standard model configuration simulates observed hemispheric scale observations and pre-industrial surface temperatures about as well as the median CMIP5 and CMIP6 ensembles while the optimised configurations simulates these better than almost all the CMIP5 and CMIP6 models. Hemispheric scale observations and pre-industrial temperatures are not systematically better simulated in CMIP6 than in CMIP5 though the CMIP6 ensemble seems to better simulate patterns of large-scale observations than the CMIP5 ensemble and the optimised HadAM3 configurations. Our results suggest that most CMIP models could be improved in their simulation of large scale observations by systematic calibration. However, the uncertainty in climate projections (for a given scenario) likely largely arises from the choice of parametrisation schemes for unresolved processes (“structural uncertainty”), with different tuning targets another possible contributor.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Istvan Keppler ◽  
Adrienn Bablena ◽  
Nihal D. Salman ◽  
Péter Kiss

PurposeTransportation of the measurement samples from their original place to the measurement site causes significant changes in their mechanical properties. The possibility of making in situ measurements helps to create more precise discrete element models.Design/methodology/approachThe possibility of using in situ modified vane shear test based measurement for the calibration of discrete element models is demonstrated in this work.FindingsThe advantage of employing the adjusted vane test is that the values of in situ measurements can be used for the calibration.Originality/valueThe procedure we present allows us to perform accurate discrete element calibration using data from on-site measurements that can be performed quickly and easily.


2021 ◽  
Vol 12 (1) ◽  
pp. 311
Author(s):  
Bruno Gonfiotti ◽  
Michela Angelucci ◽  
Bradut-Eugen Ghidersa ◽  
Xue Zhou Jin ◽  
Mihaela Ionescu-Bujor ◽  
...  

The development and the validation of old and new software in relevant DEMO reactor conditions have been exploited in the latest years within the EUROfusion Consortium. The aim was to use—if possible—the software already validated for fission reactors and to fill the gaps with new ad-hoc software. As contribution to this effort, the Karlsruhe Institute of Technology (KIT) developed and tested a novel software to apply the Best-Estimate Model Calibration and Prediction through Experimental Data Assimilation methodology to the system codes RELAP5-3D, MELCOR 1.8.6, and MELCOR 2.2. This software is called Best-estimate for SYstem Codes (BeSYC), and it is developed as a MATLAB App. The application is in charge of applying the mathematical framework of the methodology, writing and executing the code runs required by the methodology, and printing the obtained results. The main goal of BeSYC is to wrap up the methodology in a software suitable to be used by any user through a simple graphical user interface. Albeit developed in the fusion research context, BeSYC can be applied to any reactor/scenario type supported by the specific system code. The goals of BeSYC, the mathematical framework, the main characteristics, and the performed verification and validation activities are described in this paper.


Sign in / Sign up

Export Citation Format

Share Document