A Study on Concentrations of Dissolved Oxygen and Chlorophyll-a in the Coastal Waters of Babolsar

2009 ◽  
Vol 6 (10) ◽  
pp. 1860-1867 ◽  
Author(s):  
Siamak Jamshidi ◽  
Noordin Bin Abu Ba ◽  
Marzieh Yousefi
1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


2021 ◽  
Vol 255 ◽  
pp. 112237
Author(s):  
H. Lavigne ◽  
D. Van der Zande ◽  
K. Ruddick ◽  
J.F. Cardoso Dos Santos ◽  
F. Gohin ◽  
...  

2021 ◽  
Vol 262 ◽  
pp. 112482
Author(s):  
Remika S. Gupana ◽  
Daniel Odermatt ◽  
Ilaria Cesana ◽  
Claudia Giardino ◽  
Ladislav Nedbal ◽  
...  

1989 ◽  
Vol 16 (3) ◽  
pp. 308-316 ◽  
Author(s):  
C. A. Town ◽  
D. S. Mavinic ◽  
B. Moore

Urban encroachment and intensive agricultural activity within the Serpentine–Nicomekl watershed (near Vancouver, B.C.) have caused a series of fish (salmon) kills on the Serpentine River since 1980. Low dissolved oxygen was responsible for these kills. This field project investigated some of the dynamic chemical and biological relationships within the river, as well as the use of an instream aerator as a temporary, in situ, water quality improvement measure. Weekly sampling for a 6-month period during the latter half of 1985 established a solid data base for deriving and interpreting meaningful interrelationships. A strong correlation between chlorophyll a and dissolved oxygen levels before the algae die-off supported the hypothesis that algae blooms dying in the fall could create a serious oxygen demand. Because of these environmental conditions, the river is unable to sustain healthy dissolved oxygen levels during this period. As such, a prototype, 460 m artificial aeration line was designed, installed, and monitored to evaluate its potential for alleviating low dissolved oxygen conditions and improving overall water quality during the critical fall period.The instream aerator ran continuously for over 2 months, starting in September 1985. Despite better-than-expected weather conditions (i.e., cool, wet weather) and relatively high dissolved oxygen levels during the fall of 1985, the data base appeared to support the use of this prototype aeration unit as a means of "upgrading" a stretch of an urban river subject to periodic, low dissolved oxygen levels. As a result, a 2-year follow-up study and river monitoring was initiated. In both 1986 and 1987, late summer and early fall river conditions resulted in the potential for serious salmon kills, due to higher-than-normal river temperatures and very low dissolved oxygen. In both instances, the instream aerator prevented such fish kills in a key stretch of the river. Expansion of the system to include other critical stretches of the Serpentine and other urban river systems, near Vancouver, is being considered. Key words: algae, aerator, chlorophyll a, eutrophic, fish kills, instream aeration, river improvement, urban river.


2018 ◽  
Vol 13 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Shahaboddin Shamshirband ◽  
Ehsan Jafari Nodoushan ◽  
Jason E. Adolf ◽  
Azizah Abdul Manaf ◽  
Amir Mosavi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document