combined sewer overflows
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 68)

H-INDEX

27
(FIVE YEARS 5)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Alisha Yee Chan ◽  
Honghyok Kim ◽  
Michelle L. Bell

Mosquito borne diseases are increasingly problematic as climate change continues to alter patterns of precipitation, flooding, and temperatures that may favor mosquito habitats. Stormwater control measures (SCMs), ecologically sustainable methods of stormwater management, may have varying impacts on Culex mosquitoes, such as in areas with combined sewer overflows (CSOs). We studied spatial and temporal associations of SCMs and Culex mosquito counts surrounding the SCMs, stratifying our examination amongst those that do/do not use pooling and/or vegetation, as well as surrounding CSO outfalls after heavy rainfall (≥95th percentile) during summer 2018. Results indicate Culex mosquito counts after heavy rainfall were not significantly different at SCMs that use vegetation and/or ponding from at those that do not. We also found a 35.5% reduction in the increase of Culex mosquitoes the day of, and 77.0% reduction 7–8 days after, heavy rainfall at CSO outfalls treated with medium SCM density compared to those without SCMs. Our results suggest that SCMs may be associated with a reduction in the increase of Culex mosquitoes at the CSO outfalls after heavy rainfall. More research is needed to study how the impacts of SCMs on mosquito populations may affect human health.


2021 ◽  
Vol 9 (12) ◽  
pp. 1415
Author(s):  
Fabio Di Nunno ◽  
Francesco Granata ◽  
Francesco Parrino ◽  
Rudy Gargano ◽  
Giovanni de Marinis

One of the main sources of microplastics inside surface waters is represented by combined sewer overflows (CSOs), involving severe risks for the environment. The entry of microplastics into water bodies also depends on the characteristics of sewer diversion structures used as flow control devices. In this work, an experimental investigation was carried out to evaluate the outflow of microplastic particles, consisting of different types of nylon fibers, from a side weir located on a channel with a rectangular section. A specific methodology was developed for the fiber sampling and outflow assessment after the tests were performed. For the tested configurations, an increase in fibers discharged up to 196.15% was measured as the water flow rate increased by 62.75%, combined with an increase in the side weir length up to 40% and a decrease in the crest height up to 20%. The size and weight of the different fibers showed a low impact due to their low inertia, and their motion was governed by the water flow. An empirical equation to evaluate the fiber outflow as a function of water flow rate and side weir geometric characteristics was also proposed and calibrated for the experimentally tested ranges of the dimensionless lateral water outflow Q* = 0.51–0.83 and of the dimensionless geometric parameter S* = 0.114–0.200. These first experimental results make it possible to carry out a preliminary assessment of the impact of CSOs in terms of microplastics spilled into water bodies.


Author(s):  
Grazyna Sakson ◽  
Agnieszka Brzezinska ◽  
Dawid Bandzierz ◽  
Dorota Olejnik ◽  
Małgorzata Jedrzejczak ◽  
...  

AbstractSolving urban wastewater management problems requires knowledge of wastewater composition and variability. In the case of combined sewerage, this applies to both dry and wet weather. Wastewater composition is changing as a result of the appearance of new substances on the market, the changes in inhabitant lifestyle and the catchment characteristic; therefore, it must be constantly monitored. At the same time, due to the time-consuming and high costs of measurement campaigns, solutions that could limit their scope and facilitate the interpretation of the results are sought. This paper presents the results of the measurement campaign conducted in 2018–2021. The aim of the monitoring was, inter alia, assessment of wastewater composition in terms of threats to wastewater treatment plant and urban rivers, which are receivers of discharge from combined sewer overflows. The obtained results were analyzed using the multivariate statistical methods: Principal Component Analysis and Cluster Analysis. However, the applied methods did not allow for the full identification of the relationship between the wastewater quality parameters as well as the differences and similarities in the wastewater composition from individual parts of the city, which could simplify and reduce the measurement campaigns in the future. Therefore, in the case of large urban catchments, it is necessary to introduce other solutions to control the wastewater composition.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3425
Author(s):  
Marco Romei ◽  
Matteo Lucertini ◽  
Enrico Esposito Renzoni ◽  
Elisa Baldrighi ◽  
Federica Grilli ◽  
...  

Combined sewer overflows (CSOs) close to water bodies are a cause of grave environmental concern. In the past few decades, major storm events have become increasingly common in some regions, and the meteorological scenarios predict a further increase in their frequency. Consequently, CSO control and treatment according to best practices, the adoption of innovative treatment solutions and careful sewer system management are urgently needed. A growing number of publications has been addressing the quality, quantity and types of available water management and treatment options. In this study, we describe the construction of an innovative detention reservoir along the Arzilla River (Fano, Italy) whose function is to store diluted CSO wastewater exceeding the capacity of a combined drain system. River water sampling and testing for microbial contamination downstream of the tank after a heavy rain event found a considerable reduction of fecal coliform concentrations, which would have compounded the impact of stormwater on the bathing site. These preliminary results suggest that the detention tank exerted beneficial environmental effects on bathing water by lowering the microbial load.


Author(s):  
Khalid El Ghazouli ◽  
Jamal El Khatabi ◽  
Aziz Soulhi ◽  
Isam Shahrour

Abstract Urbanization and an increase in precipitation intensities due to climate change, in addition to limited urban drainage systems (UDS) capacity, are the main causes of combined sewer overflows (CSOs) that cause serious water pollution problems in many cities around the world. Model predictive control (MPC) systems offer a new approach to mitigate the impact of CSOs by generating optimal temporally and spatially varied dynamic control strategies of sewer system actuators. This paper presents a novel MPC based on neural networks for predicting flows, a stormwater management model (SWMM) for flow conveyance, and a genetic algorithm for optimizing the operation of sewer systems and defining the best control strategies. The proposed model was tested on the sewer system of the city of Casablanca in Morocco. The results have shown the efficiency of the developed MPC to reduce CSOs while considering short optimization time thanks to parallel computing.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Mark Betancourt

Scientists, community groups, and the Clean Water Act are behind Washington, D.C.’s massive project to reduce combined sewer overflows by 96%.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2831
Author(s):  
Jan Philip Nickel ◽  
Stephan Fuchs

The assessment of pollution from sewer discharges requires flexible and reliable sampling methods. The characteristics of the sampling system must be known to allow comparison with other studies. Large volume samplers (LVS) are increasingly used for monitoring in sewer systems and surface waters. This article provides a comprehensive description of this widely applicable sampling system, gives insight into its comparability to standard methods, and provides recommendations for researchers and practitioners involved in water quality monitoring and urban water management. Two methods for subsampling from LVS are presented, i.e., collection of homogenized or sedimented samples. Results from a sampling campaign at combined sewer overflows (CSOs) were used to investigate the comparability of both subsampling methods and conventional autosamplers (AS). Event mean concentrations (EMC) of total suspended solids (TSS) derived from homogenized LVS samples and AS pollutographs were comparable. TSS-EMC of homogenized and sedimented LVS samples were also comparable. However, differences were found for particle size distribution and organic matter content. Consequently, sedimented LVS samples, which contained solids masses in the range of 3–70 g, are recommended to be used for particle characterization. The differences between homogenized and sedimented LVS samples, e.g., the quality of homogenization and the stability of samples during sedimentation in LVS, should be further investigated. Based on LVS results, average TSS concentrations of 50–60 mg/L were found for CSOs from centralized treatment facilities in Bavaria. With a median share of 84%, particles <63 µm were the dominant fraction.


Author(s):  
Dr. V. Venkata Lakshmi

Abstract: Over the past few years, several studies have reported the presence of micro plastics in treated tap and bottled water, raising questions and concerns about the impact that micro plastics in drinking-water might have on human health. Microplastics are ubiquitous within the environment and are detected in marine water, wastewater, water, food, air and drinking-water, both bottled and water. Microplastics enter freshwater environments in a number of ways: primarily from surface run-off and both treated and untreated wastewater effluent, but also from combined sewer overflows, industrial effluent degraded plastic waste and atmospheric deposition. Further, the limited evidence indicates that some microplastics found in drinking-water may come from treatment and distribution systems for water and/or bottling of drinking water. Keywords: Fresh water, health, process.


Sign in / Sign up

Export Citation Format

Share Document