seasonal cycles
Recently Published Documents


TOTAL DOCUMENTS

577
(FIVE YEARS 102)

H-INDEX

52
(FIVE YEARS 5)

Author(s):  
Kwasu David Tembo

A recurrent congenital weakness of 20th and 21st century television, literature, and cinema vampires is their porphyric susceptibility to ultraviolet radiation. Central to vampires’ continued undead life is the problem of sunlight. In this way, sunless environs like the Arctic and Antarctic represent what I describe as purely Gothic environments in whose desolation, cold, and darkness, undead life is able to proliferate, unmarred and unimpeded by the typical diurnal/nocturnal cycles of luminosity that trouble the undead lives of vampires. In order to theorize the value of the Arctic as an embodiment of Gothic-horror, this essay uses Steve Niles and Ben Templesmith’s 30 Days of Night (2002) as a case study of the pathetic resonances between the Arctic and the figure of the vampire. Following on from this, the analysis turns to Michel Foucault’s concept of the heterotopia in order to theorize the manner in which the Arctic, whose nocturnal/diurnal rhythms stand in radical opposition to the majority of seasonal cycles elsewhere on earth, represents an onto-existential paradise of death for the undead: a chronotope that embodies the essential attributes of the onto-existential condition of the undead.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Xiaolan Zhang ◽  
Pengjia Bao ◽  
Na Ye ◽  
Xuelan Zhou ◽  
Yongfeng Zhang ◽  
...  

The development of hair follicles in yak shows significant seasonal cycles. In our previous research, transcriptome data including mRNAs and lncRNAs in five stages during the yak hair follicles (HFs) cycle were detected, but their regulation network and the hub genes in different periods are yet to be explored. This study aimed to screen and identify the hub genes during yak HFs cycle by constructing a mRNA-lncRNA co-expression network. A total of 5000 differently expressed mRNA (DEMs) and 729 differently expressed long noncoding RNA (DELs) were used to construct the co-expression network, based on weighted genes co-expression network analysis (WGCNA). Four temporally specific modules were considered to be significantly associated with the HFs cycle of yak. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the modules are enriched into Wnt, EMC-receptor interaction, PI3K-Akt, focal adhesion pathways, and so on. The hub genes, such as FER, ELMO1, PCOLCE, and HOXC13, were screened in different modules. Five hub genes (WNT5A, HOXC13, DLX3, FOXN1, and OVOL1) and part of key lncRNAs were identified for specific expression in skin tissue. Furthermore, immunofluorescence staining and Western blotting results showed that the expression location and abundance of DLX3 and OVOL1 are changed following the process of the HFs cycle, which further demonstrated that these two hub genes may play important roles in HFs development.


2021 ◽  
Vol 2 (6) ◽  
pp. 20-25
Author(s):  
Hugues Bi Ateme Bikang ◽  
Stephan Ntie ◽  
Thibaud Decaëns ◽  
Rodolphe Rougierie

Lepidopterans are an important component of central African biodiversity. Indeed, they play an important role as plant pollinators, food source, bio-indicators, and even pests for local crops. However, almost nothing is known about these moths in central Africa, while they are being increasingly threatened by significant landscape changes due mainly to infrastructure constructions and climate change. So, the mosaic of forests and savannah in the Plateaux Batéké (southeastern Gabon) constitutes a unique opportunity to study how Lepidopteran communities might evolve along an ecological gradient with upcoming changes in forest cover in the region. A total of 2824 specimens, representing 14 distinct families or subfamilies, were sampled using light-trapping and sorted into morphospecies, while a subset of 95 samples was further investigated using both morphological and molecular methods. Community comparison of nocturnal Lepidopteran showed that there was a significant difference in terms of abundance only between sampling sessions. Indeed, this could be due to food availability between sampling sessions. In May and June in Gabon, most plants have flowers and fruits and moth families such as Geometridae and Sphingidae emerge at that time. The most represented family in our sampled specimens was the Geometridae, which prefers habitats with permanent river courses as is the case in our sampling area. However, a more comprehensive study using various trapping methods, during several seasonal cycles and with more replicates in each habitat type is needed for a better understanding of the community structure and ecological traits that characterize nocturnal Lepidopteran in the Plateaux Batéké of Gabon.


2021 ◽  
Vol 38 ◽  
pp. 100924
Author(s):  
Jean-Carlos Ruiz-Hernández ◽  
Thomas Condom ◽  
Pierre Ribstein ◽  
Nicolas Le Moine ◽  
Jhan-Carlo Espinoza ◽  
...  

2021 ◽  
Vol 21 (22) ◽  
pp. 16661-16687
Author(s):  
Nicole Jacobs ◽  
William R. Simpson ◽  
Kelly A. Graham ◽  
Christopher Holmes ◽  
Frank Hase ◽  
...  

Abstract. Satellite-based observations of atmospheric carbon dioxide (CO2) provide measurements in remote regions, such as the biologically sensitive but undersampled northern high latitudes, and are progressing toward true global data coverage. Recent improvements in satellite retrievals of total column-averaged dry air mole fractions of CO2 (XCO2) from the NASA Orbiting Carbon Observatory 2 (OCO-2) have allowed for unprecedented data coverage of northern high-latitude regions, while maintaining acceptable accuracy and consistency relative to ground-based observations, and finally providing sufficient data in spring and autumn for analysis of satellite-observed XCO2 seasonal cycles across a majority of terrestrial northern high-latitude regions. Here, we present an analysis of XCO2 seasonal cycles calculated from OCO-2 data for temperate, boreal, and tundra regions, subdivided into 5∘ latitude by 20∘ longitude zones. We quantify the seasonal cycle amplitudes (SCAs) and the annual half drawdown day (HDD). OCO-2 SCAs are in good agreement with ground-based observations at five high-latitude sites, and OCO-2 SCAs show very close agreement with SCAs calculated for model estimates of XCO2 from the Copernicus Atmosphere Monitoring Services (CAMS) global inversion-optimized greenhouse gas flux model v19r1 and the CarbonTracker2019 model (CT2019B). Model estimates of XCO2 from the GEOS-Chem CO2 simulation version 12.7.2 with underlying biospheric fluxes from CarbonTracker2019 (GC-CT2019) yield SCAs of larger magnitude and spread over a larger range than those from CAMS, CT2019B, or OCO-2; however, GC-CT2019 SCAs still exhibit a very similar spatial distribution across northern high-latitude regions to that from CAMS, CT2019B, and OCO-2. Zones in the Asian boreal forest were found to have exceptionally large SCA and early HDD, and both OCO-2 data and model estimates yield a distinct longitudinal gradient of increasing SCA from west to east across the Eurasian continent. In northern high-latitude regions, spanning latitudes from 47 to 72∘ N, longitudinal gradients in both SCA and HDD are at least as pronounced as latitudinal gradients, suggesting a role for global atmospheric transport patterns in defining spatial distributions of XCO2 seasonality across these regions. GEOS-Chem surface contact tracers show that the largest XCO2 SCAs occur in areas with the greatest contact with land surfaces, integrated over 15–30 d. The correlation of XCO2 SCA with these land surface contact tracers is stronger than the correlation of XCO2 SCA with the SCA of CO2 fluxes or the total annual CO2 flux within each 5∘ latitude by 20∘ longitude zone. This indicates that accumulation of terrestrial CO2 flux during atmospheric transport is a major driver of regional variations in XCO2 SCA.


2021 ◽  
Author(s):  
Vilma Kangasaho ◽  
Aki Tsuruta ◽  
Leif Backman ◽  
Pyry Mäkinen ◽  
Sander Houweling ◽  
...  

Abstract. This study investigates the contribution of different CH4 sources to the seasonal cycle of 𝛿13C during years 2000–2012 using the TM5 atmospheric transport model. The seasonal cycles of anthropogenic emissions from two versions of the EDGAR inventories, v4.3.2 and v5.0 are examined. Those includes emissions from Enteric Fermentation and Manure Management (EFMM), rice cultivation and residential sources. Those from wetlands obtained from LPX-Bern v1.4 are also examined in addition to other sources such as fires and ocean sources. We use spatially varying isotopic source signatures for EFMM, coal, oil and gas, wetlands, fires and geological emission and for other sources a global uniform value. We analysed the results as zonal means for 30° latitudinal bands. Seasonal cycles of 𝛿13C are found to be an inverse of CH4 cycles in general, with a peak-to-peak amplitude of 0.07–0.26 ‰. However, due to emissions, the phase ellipses do not form straight lines, and the anti-correlations between CH4 and 𝛿13C are weaker (−0.35 to −0.91) in north of 30° S. We found that wetland emissions are the dominant driver in the 𝛿13C seasonal cycle in the Northern Hemisphere and Tropics, such that the timing of 𝛿13C seasonal minimum is shifted by ∼90 days in 60° N–90° N from the end of the year to the beginning of the year when seasonality of wetland emissions is removed. The results also showed that in the Southern Hemisphere Tropics, emissions from fires contribute to the enrichment of 𝛿13C in July–October. In addition, we also compared the results against observations from the South Pole, Antarctica, Alert, Nunavut, Canada and Niwot Ridge, Colorado, USA. In light of this research, comparison to the observation showed that the seasonal cycle of EFMM emissions in EDGAR v5.0 inventory is more realistic than in v4.3.2. In addition, the comparison at Alert showed that modelled 𝛿13C amplitude was approximately half of the observations, mainly because the model could not reproduce the strong depletion in autumn. This indicates that CH4 emission magnitude and seasonal cycle of wetlands may need to be revised. Results from Niwot Ridge indicate that in addition to biogenic emissions, the proportion of biogenic to fossil based emissions may need to be revised.


2021 ◽  
Vol 168 (11) ◽  
Author(s):  
Edward Lavender ◽  
Dmitry Aleynik ◽  
Jane Dodd ◽  
Janine Illian ◽  
Mark James ◽  
...  

AbstractTrends in depth and vertical activity reflect the behaviour, habitat use and habitat preferences of marine organisms. However, among elasmobranchs, research has focused heavily on pelagic sharks, while the vertical movements of benthic elasmobranchs, such as skate (Rajidae), remain understudied. In this study, the vertical movements of the Critically Endangered flapper skate (Dipturus intermedius) were investigated using archival depth data collected at 2 min intervals from 21 individuals off the west coast of Scotland (56.5°N, −5.5°W) in 2016–17. Depth records comprised nearly four million observations and included eight time series longer than 1 year, forming one of the most comprehensive datasets collected on the movement of any skate to date. Additive modelling and functional data analysis were used to investigate vertical movements in relation to environmental cycles and individual characteristics. Vertical movements were dominated by individual variation but included prolonged periods of limited activity and more extensive movements that were associated with tidal, diel, lunar and seasonal cycles. Diel patterns were strongest, with irregular but frequent movements into shallower water at night, especially in autumn and winter. This research strengthens the evidence for vertical movements in relation to environmental cycles in benthic species and demonstrates a widely applicable flexible regression framework for movement research that recognises the importance of both individual-specific and group-level variation.


2021 ◽  
Author(s):  
Shigeyuki Ishidoya ◽  
Kazuhiro Tsuboi ◽  
Yosuke Niwa ◽  
Hidekazu Matsueda ◽  
Shohei Murayama ◽  
...  

Abstract. We analyzed air samples collected onboard a cargo aircraft C-130 over the western North Pacific from May 2012 to March 2020 for atmospheric δ(O2/N2) and CO2 amount fraction. We corrected for significant artificial fractionation of O2 and N2 caused by thermal diffusion during the air sample collection by using the simultaneously-measured δ(Ar/N2). The observed seasonal cycles of the δ(O2/N2) and atmospheric potential oxygen (δ(APO)) varied nearly in opposite phase to that of the CO2 amount fraction at all latitudes and altitudes. Seasonal amplitudes of δ(APO) decreased with latitude from 34 to 25° N, as well as with increasing altitude from the surface to 6 km by 50–70 %, while those of CO2 amount fraction decreased by less than 20 %. By comparing the observed values with the simulated δ(APO) and CO2 amount fraction values generated by an atmospheric transport model, we found that the seasonal δ(APO) cycle in the middle troposphere was modified significantly by a superposition of the northern and southern hemispheric seasonal cycles due to the inter-hemispheric mixing of air. The simulated δ(APO) underestimated the observed interannual variation in δ(APO) significantly, probably due to the interannual variation in the annual mean air-sea O2 flux. Interannual variation in δ(APO) driven by the net marine biological activities, obtained by subtracting the assumed solubility-driven component of δ(APO) from the total variation, indicated a clear evidence of influence on annual sea-to-air (air-to-sea) marine biological O2 flux during El Niño (La Niña). By analyzing the observed secular trends of δ(O2/N2) and CO2 amount fraction, global average terrestrial biospheric and oceanic CO2 uptakes for the period 2012–2019 were estimated to be (1.8 ± 0.9) and (2.8 ± 0.6) Pg a−1 (C equivalents), respectively.


Author(s):  
Sharon E. Nicholson ◽  
Adam T. Hartman ◽  
Douglas A. Klotter

AbstractThe purpose of this article is to determine the meteorological factors controlling the lake-effect rains over Lake Victoria. Winds, divergence, vertical motion, specific humidity, Convective Available Potential Energy (CAPE), and Convective Inhibition (CIN) were examined. The local wind regime and associated divergence/convergence are the major factors determining the diurnal cycle of rainfall over the lake and catchment. The major contrast between over-lake rainfall in the wet- and dry-season months is the vertical profile of omega. This appears to be a result of seasonal contrasts in CAPE, CIN, and specific humidity, parameters that play a critical role in vertical motion and convective development.


2021 ◽  
Vol 13 (19) ◽  
pp. 3958
Author(s):  
Yuqing Feng ◽  
Xingxing Kuang ◽  
Sihai Liang ◽  
Suning Liu ◽  
Yingying Yao ◽  
...  

Evapotranspiration (ET) is one of the important components of the global hydrologic cycle, energy exchange, and carbon cycle. However, basin scale actual ET (hereafter ETa) is difficult to estimate accurately. We present an evaluation of four actual ET products (hereafter ETp) in seven sub-basins in the Tibetan Plateau. The actual ET calculated by the water balance method (hereafter ETref) was used as the reference for correction of the different ETp. The ETref and ETp show obvious seasonal cycles, but the ETp overestimated or underestimated the ET of the sub-basins in the Tibetan Plateau. A simple and effective method was proposed to correct the basin-scale ETp. The method was referred to as ratio bias correction, and it can effectively remove nearly all biases of the ETp. The proposed method is simpler and more effective in correcting the four ETp compared with the gamma distribution bias correction method. The reliability of the ETp is significantly increased after the ratio bias correction. The ratio bias correction method was used to correct the ETp in the seven sub-basins in the Tibetan Plateau, and regional ET was significantly improved. The results may help improve estimation of the ET of the Tibetan Plateau and thereby contribute to a better understanding of the hydrologic cycle of the plateau.


Sign in / Sign up

Export Citation Format

Share Document