scholarly journals STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

2016 ◽  
Vol 818 (2) ◽  
pp. 168 ◽  
Author(s):  
S. Inoue ◽  
K. Hayashi ◽  
K. Kusano
2008 ◽  
Vol 675 (2) ◽  
pp. 1637-1644 ◽  
Author(s):  
C. J. Schrijver ◽  
M. L. DeRosa ◽  
T. Metcalf ◽  
G. Barnes ◽  
B. Lites ◽  
...  

2012 ◽  
Vol 144 (2) ◽  
pp. 33 ◽  
Author(s):  
J. K. Thalmann ◽  
A. Pietarila ◽  
X. Sun ◽  
T. Wiegelmann

2013 ◽  
Vol 780 (1) ◽  
pp. 55 ◽  
Author(s):  
Chaowei Jiang ◽  
S. T. Wu ◽  
Xueshang Feng ◽  
Qiang Hu

2009 ◽  
Vol 691 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Yingna Su ◽  
Adriaan van Ballegooijen ◽  
Bruce W. Lites ◽  
Edward E. Deluca ◽  
Leon Golub ◽  
...  

2009 ◽  
Vol 696 (2) ◽  
pp. 1780-1791 ◽  
Author(s):  
Marc L. DeRosa ◽  
Carolus J. Schrijver ◽  
Graham Barnes ◽  
K. D. Leka ◽  
Bruce W. Lites ◽  
...  

2015 ◽  
Vol 11 (S320) ◽  
pp. 167-174
Author(s):  
M. S. Wheatland ◽  
S. A. Gilchrist

AbstractWe review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.


Solar Physics ◽  
2020 ◽  
Vol 295 (4) ◽  
Author(s):  
Y. I. Egorov ◽  
V. G. Fainshtein ◽  
I. I. Myshyakov ◽  
S. A. Anfinogentov ◽  
G. V. Rudenko

2013 ◽  
Vol 8 (S300) ◽  
pp. 479-480
Author(s):  
Jie Zhao ◽  
Hui Li ◽  
Etienne Pariat ◽  
Brigitte Schmieder ◽  
Yang Guo ◽  
...  

AbstractWith the cylindrical equal area (CEA) projection data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), we reconstructed the three-dimensional (3D) magnetic fields in the corona, using a non-linear force-free field (NLFFF) extrapolation method every 12 minutes during five days, to calculate the squashing degree factor Q in the volume. The results show that this AR has an hyperbolic flux tube (HFT) configuration, a typical topology of quadrupole, which is stable even during the two large flares (M6.6 and X2.2 class flares).


Sign in / Sign up

Export Citation Format

Share Document