active region
Recently Published Documents


TOTAL DOCUMENTS

2344
(FIVE YEARS 371)

H-INDEX

76
(FIVE YEARS 8)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 145
Author(s):  
Paweł A. Wieczorkiewicz ◽  
Halina Szatylowicz ◽  
Tadeusz M. Krygowski

Substituted heterocyclic arenes play important roles in biochemistry, catalysis, and in the design of functional materials. Exemplary six-membered heteroaromatic molecules, that differ from benzene by inclusion of one heteroatom, are pyridine, phosphorine, arsabenzene, and borabenzene. This theoretical study concerns the influence of the heteroatom present in these molecules on the properties of substituents of two types: electron-donating (ED) NH2 group and electron-accepting (EA) NO2 group, attached at the 2-, 3-, or 4-position. The effect is evaluated by the energy of interaction (Erel) between the substituent and the substituted system and electronic properties of the substituents described by the charge of the substituent active region (cSAR) index. In addition, several geometric descriptors of the substituent and heteroaromatic ring, as well as changes in the aromaticity, are considered. The latter are assessed using the Electron Density of Delocalized Bonds (EDDBs) property of delocalized π electrons. The obtained results show that the electronegativity (EN) of the heteroatom has a profound effect on the EA/ED properties of the substituents. This effect is also reflected in the geometry of studied molecules. The Erel parameter indicates that the relative stability of the molecules is highly related to the electronic interactions between the substituent and the heteroarene. This especially applies to the enhancement or weakening of π-resonance due to the EN of the heteroatom. Additionally, in the 2-heteroarene derivatives, specific through-space ortho interactions contribute to the heteroatom effects.


2022 ◽  
Vol 12 (2) ◽  
pp. 761
Author(s):  
Mikhail Burlakovskiy ◽  
Natalia Saveleva ◽  
Andrey M. Rumyantsev ◽  
Vladislav V. Yemelyanov ◽  
Marina V. Padkina ◽  
...  

Many of the most modern drugs are of a protein nature and are synthesized by transgenic producer organisms. Bacteria, yeast, or animal cell cultures are commonly used, but plants have a number of advantages—minimal biomass unit cost, animal safety (plants are not attacked by mammalian pathogens), the agricultural scale of production, and the ability to produce complex proteins. A disadvantage of plants may be an unstable level of transgene expression, which depends on the transgene structure and its insertion site. We analyzed the structure of T-DNA inserts in transgenic tobacco plants (Nicotiana tabacum L.) belonging to two lines obtained using the same genetic construct but demonstrating different biological activities of the recombinant protein (bovine interferon-gamma). We found that, in one case, T-DNA was integrated into genomic DNA in the region of centromeric repeats, and in the other, into a transcriptionally active region of the genome. It was also found that in one case, the insert has a clustered structure and consists of three copies. Thus, the structure of T-DNA inserts in both lines is not optimal (the optimal structure includes a single copy of the insert located in the active region of the genome). It is desirable to carry out such studies at the early stages of transgenic plants selection.


Author(s):  
Narges Fathalian ◽  
Seyedeh Somayeh Hosseini Rad ◽  
Nasibeh Alipour ◽  
Hossein Safari

Abstract Here, we study the temperature structure of flaring and non-flaring coronal loops, using extracted loops from images taken in six extreme ultraviolet (EUV) channels recorded by Atmospheric Imaging Assembly (AIA)/ Solar Dynamic Observatory (SDO). We use data for loops of X2.1-class-flaring active region (AR11283) during 22:10UT till 23:00UT, on 2011, September 6; and non-flaring active region (AR12194) during 08:00:00UT till 09:00:00UT on 2014, October 26. By using spatially-synthesized Gaussian DEM forward-fitting method, we calculate the peak temperatures for each strip of the loops. We apply the Lomb-Scargle method to compute the oscillations periods for the temperature series of each strip. The periods of the temperature oscillations for the flaring loops are ranged from 7 min to 28.4 min. These temperature oscillations show very close behavior to the slow-mode oscillation. We observe that the temperature oscillations in the flaring loops are started at least around 10 minutes before the transverse oscillations and continue for a long time duration even after the transverse oscillations are ended. The temperature amplitudes are increased at the flaring time (during 20 min) in the flaring loops. The periods of the temperatures obtained for the non-flaring loops are ranged from 8.5 min to 30 min,but their significances are less (below 0.5) in comparison with the flaring ones (near to one). Hence the detected temperature periods for the non-flaring loops' strips are less probable in comparison with the flaring ones, and maybe they are just fluctuations. Based on our confined observations, it seems that the flaring loops' periods show more diversity and their temperatures have wider ranges of variation than the non-flaring ones. More accurate commentary in this respect requires more extensive statistical research and broader observations.


2022 ◽  
Vol 21 (12) ◽  
pp. 312
Author(s):  
Johan Muhamad ◽  
Muhamad Zamzam Nurzaman ◽  
Tiar Dani ◽  
Arun Relung Pamutri

Abstract During the lifetime of AR 12673, its magnetic field evolved drastically and produced numerous large flares. In this study, using full maps of the Sun observed by the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory, we identified that AR 12673 emerged in decayed AR 12665, which had survived for two solar rotations. Although both ARs emerged at the same location, they possessed different characteristics and different flare productivities. Therefore, it is important to study the long-term magnetic evolution of both ARs to identify the distinguishing characteristics of an AR that can produce large solar flares. We used the Space-weather Helioseismic and Magnetic Imager Active Region Patch data to investigate the evolution of the photospheric magnetic field and other physical properties of the recurring ARs during five Carrington rotations. All these investigated parameters dynamically evolved through a series of solar rotations. We compared the long-term evolution of AR 12665 and AR 12673 to understand the differences in their flare-producing properties. We also studied the relation of the long-term evolution of these ARs with the presence of active longitude. We found that the magnetic flux and complexity of AR 12673 developed much faster than those of AR 12665. Our results confirmed that a strong emerging flux that emerged in the pre-existing AR near the active longitude created a very strong and complex AR that produced large flares.


Author(s):  
A.A. Харченко ◽  
А.М. Надточий ◽  
А.А. Серин ◽  
С.А. Минтаиров ◽  
Н.А. Калюжный ◽  
...  

The electroluminescence spectra of waveguiding structures based on quantum well-dots were investigated with polarization resolution in the temperature range of 60−300 K. It is found that the ground state emission consists of two peaks with different degrees of TE-polarization and these peaks are getting closer with temperature decrease. We attribute the bimodality to the existence of two different types of nanoobjects in the active region: the quantum well-dots, which have partially TE-polarized emission, and quantum dots emitting almost fully TE-polarized light.


2022 ◽  
Vol 2149 (1) ◽  
pp. 012017
Author(s):  
Siarhey Nikanenka ◽  
Aliaksandr Danilchyk ◽  
Barbara Shulenkova ◽  
Olga Tarasova ◽  
Evgenii Lutsenko

Abstract A compact reference UVC source based on commercially available LED has been developed. The article presents the design and results of the study of the optical characteristics of the radiation of the reference UVC LED source. The source provides a power density of radiation up to 400 μW/cm2 on area of 3×3 mm with inhomogeneity of 1.5 %.The emission band of a source with a maximum of 265 nm is predominantly 97 % in the UV-C spectrum region, and a small part of it is inUV-B and UV-A regions, 2.7 % and 0.3 %, respectively. The use of ComboSource for laser diodes allowed to precisionally stabilize the injection current and temperature of the LED. It is shown that overheating of the active region of the selected UV LED is only 10°C - 25°C at the recommended injection currents due to the peculiarities of its design. This results in a low degradation rate of the UV LED. Possible ways to improve the characteristics of the reference UVCsource are discussed.


2022 ◽  
pp. 118741
Author(s):  
Rui Li ◽  
Chengxin Wang ◽  
Kaiju Shi ◽  
Changfu Li ◽  
Shangda Qu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7890
Author(s):  
Friedhard Römer ◽  
Martin Guttmann ◽  
Tim Wernicke ◽  
Michael Kneissl ◽  
Bernd Witzigmann

In the past years, light-emitting diodes (LED) made of GaN and its related ternary compounds with indium and aluminium have become an enabling technology in all areas of lighting. Visible LEDs have yet matured, but research on deep ultraviolet (UV) LEDs is still in progress. The polarisation in the anisotropic wurtzite lattice and the low free hole density in p-doped III-nitride compounds with high aluminium content make the design for high efficiency a critical step. The growth kinetics of the rather thin active quantum wells in III-nitride LEDs makes them prone to inhomogeneous broadening (IHB). Physical modelling of the active region of III-nitride LEDs supports the optimisation by revealing the opaque active region physics. In this work, we analyse the impact of the IHB on the luminescence and carrier transport III-nitride LEDs with multi-quantum well (MQW) active regions by numerical simulations comparing them to experimental results. The IHB is modelled with a statistical model that enables efficient and deterministic simulations. We analyse how the lumped electronic characteristics including the quantum efficiency and the diode ideality factor are related to the IHB and discuss how they can be used in the optimisation process.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 40
Author(s):  
Simone Michele Mazza

PIONEER is a next-generation experiment to measure the charged pion branching ratios to electrons vs. muons Re/μ=Γπ+→e+ν(γ)Γπ+→μ+ν(γ) and pion beta decay (Pib) π+→π0eν. The pion to muon decay (π→μ→e) has four orders of magnitude higher probability than the pion to electron decay (π→eν). To achieve the necessary branching-ratio precision it is crucial to suppress the π→μ→e energy spectrum that overlaps with the low energy tail of π→eν. A high granularity active target (ATAR) is being designed to suppress the muon decay background sufficiently so that this tail can be directly measured. In addition, ATAR will provide detailed 4D tracking information to separate the energy deposits of the pion decay products in both position and time. This will suppress other significant systematic uncertainties (pulse pile-up, decay in flight of slow pions) to <0.01%, allowing the overall uncertainty in to be reduced to O (0.01%). The chosen technology for the ATAR is Low Gain Avalanche Detector (LGAD). These are thin silicon detectors (down to 50 μm in thickness or less) with moderate internal signal amplification and great time resolution. To achieve a 100% active region several emerging technologies are being evaluated, such as AC-LGADs and TI-LGADs. A dynamic range from MiP (positron) to several MeV (pion/muon) of deposited charge is expected, the detection and separation of close-by hits in such a wide dynamic range will be a main challenge. Furthermore, the compactness and the requirement of low inactive material of the ATAR present challenges for the readout system, forcing the amplifier chip and digitizer to be positioned away from the active region.


Sign in / Sign up

Export Citation Format

Share Document