nonlinear force
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 50)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuto Tamura ◽  
Marie Tani ◽  
Rei Kurita

AbstractComposite materials have been actively developed in recent years because they are highly functional such as lightweight, high yield strength, and superior load response. In spite of importance of the composite materials, mechanisms of the mechanical responses of composites have been unrevealed. Here, in order to understand the mechanical responses of composites, we investigated the origin and nature of the force distribution in heterogeneous materials using a soft particle model. We arranged particles with different softness in a lamellar structure and then we applied homogeneous pressure to the top surface of the system. It is found that the density in each region differently changes and then the density difference induces a nonlinear force distribution. In addition, it is found that the attractive interaction suppresses the density difference and then the force distribution is close to the theoretical prediction. Those findings may lead material designs for functional composite materials.


2021 ◽  
Vol 11 (23) ◽  
pp. 11539
Author(s):  
Cong Hung Nguyen ◽  
Cong Minh Ho ◽  
Kyoung Kwan Ahn

This research introduces an air spring vibration isolator system (ASVIS) based on a negative-stiffness structure (NSS) to improve the vehicle seat’s vibration isolation performance at low excitation frequencies. The main feature of the ASVIS consists of two symmetric bellows-type air springs which were designed on the basis of a negative stiffness mechanism. In addition, a crisscross structure with two straight bars was also used as the supporting legs to provide the nonlinear characteristics with NSS. Moreover, instead of using a vertical mechanical spring, a sleeve-type air spring was employed to provide positive stiffness. As a result, as the weight of the driver varies, the dynamic stiffness of the ASVIS can be easily adjusted and controlled. Next, the effects of the dimension parameters on the nonlinear force and nonlinear stiffness of ASVIS were analyzed. A design process for the ASVIS is provided based on the analytical results in order to achieve high static–low dynamic stiffness. Finally, numerical simulations were performed to evaluate the effectiveness of the ASVIS. The results obtained in this paper show that the values of the seat displacement of the ASVIS with NSS were reduced by 77.16% in comparison with those obtained with the traditional air spring isolator without NSS, which indicates that the design of the ASVIS isolator with NSS allows the effective isolation of vibrations in the low-frequency region.


Author(s):  
V.B. Sinilschikov ◽  
K.V. Melikhov ◽  
S.A. Kunavich

Elastomeric shock absorbers are used in various technical fields to protect equipment from impacts. Elastomers made in an arched shape have complex nonlinear force characteristics due to large deformations, loss of stability of working elements and closing of surfaces. In this regard, obtaining the power characteristics of arched elastomeric shock absorbers is a complex computational problem. It is noteworthy that, in the literature, these characteristics are given only for the case of normal compression. However, when assessing the possibility of using a shock-absorbing system based on arched elastomeric shock absorbers, it is necessary to take into account their lateral force. The study proposes to solve the problem of determining the elastic force characteristics of a shock absorber while operating in the normal and lateral directions in the system of finite element analysis in a flat formulation. Analytical expressions are obtained for the normal and transverse static reactions of the shock absorber under simultaneous loading in the normal and transverse directions. Analytic expressions can be used to simulate complex shock-absorbing systems with a large number of such shock absorbers.


2021 ◽  
Author(s):  
Pengfei Liu ◽  
Minyi Zheng ◽  
Liang Luo ◽  
Donghong ning ◽  
Nong Zhang

2021 ◽  
Author(s):  
Thomas Wiegelmann ◽  
Thomas Neukirch ◽  
Iulia Chifu ◽  
Bernd Inhester

<p>Computing the solar coronal magnetic field and plasma<br>environment is an important research topic on it's own right<br>and also important for space missions like Solar Orbiter to<br>guide the analysis of remote sensing and in-situ instruments.<br>In the inner solar corona plasma forces can be neglected and<br>the field is modelled under the assumption of a vanishing<br>Lorentz-force. Further outwards (above about two solar radii)<br>plasma forces and the solar wind flow has to be considered.<br>Finally in the heliosphere one has to consider that the Sun<br>is rotating and the well known Parker-spiral forms.<br>We have developed codes based on optimization principles<br>to solve nonlinear force-free, magneto-hydro-static and<br>stationary MHD-equilibria. In the present work we want to<br>extend these methods by taking the solar rotation into account.</p>


2021 ◽  
Vol 908 (2) ◽  
pp. 132
Author(s):  
Daiki Yamasaki ◽  
Satoshi Inoue ◽  
Shin’ichi Nagata ◽  
Kiyoshi Ichimoto

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Lei Li ◽  
Hanbiao Liu ◽  
Mingyu Shao ◽  
Chicheng Ma

Frequency stabilization can overcome the dependence of resonance frequency on amplitude in nonlinear microelectromechanical systems, which is potentially useful in nonlinear mass sensor. In this paper, the physical conditions for frequency stabilization are presented theoretically, and the influence of system parameters on frequency stabilization is analyzed. Firstly, a nonlinear mechanically coupled resonant structure is designed with a nonlinear force composed of a pair of bias voltages and an alternating current (AC) harmonic load. We study coupled-mode vibration and derive the expression of resonance frequency in the nonlinear regime by utilizing perturbation and bifurcation analysis. It is found that improving the quality factor of the system is crucial to realize the frequency stabilization. Typically, stochastic dynamic equation is introduced to prove that the coupled resonant structure can overcome the influence of voltage fluctuation on resonance frequency and improve the robustness of the sensor. In addition, a novel parameter identification method is proposed by using frequency stabilization and bifurcation jumping, which effectively avoids resonance frequency shifts caused by driving voltage. Finally, numerical studies are introduced to verify the mass detection method. The results in this paper can be used to guide the design of a nonlinear sensor.


Sign in / Sign up

Export Citation Format

Share Document