solar dynamics observatory
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 127)

H-INDEX

29
(FIVE YEARS 6)

Author(s):  
Jie Chen ◽  
Robertus Erdélyi ◽  
Jiajia Liu ◽  
Yuanyong Deng ◽  
Fionnlagh Mackenzie Dover ◽  
...  

An Extreme Ultraviolet (EUV) jet that occurred around 22:30 on July 2, 2012 was observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO). There were two phases of the jet. In Phase 1, two blobs were observed. In Phase 2, the intensity of the jet was almost coherent initially. One minute later, three blobs were formed at the same time in the jet, and the width of the jet changed after the formation of these blobs. The formation and evolution processes of the blobs in these two phases are analyzed in this paper. The physical parameters of the blobs are determined. The measured width of the blobs is 0.8 − 2.3 Mm, and the apparent velocities of the blobs are from 59 km s−1 to 185 km s−1. The formation mechanism of the blobs is likely to be tear-mode instability.


2022 ◽  
Vol 21 (12) ◽  
pp. 318
Author(s):  
Syed Ibrahim ◽  
Wahab Uddin ◽  
Bhuwan Joshi ◽  
Ramesh Chandra ◽  
Arun Kumar Awasthi

Abstract In this article, we compare the properties of two coronal mass ejections (CMEs) that show similar source region characteristics but different evolutionary behaviors in the later phases. We discuss the two events in terms of their near-Sun characteristics, interplanetary evolution and geoeffectiveness. We carefully analyzed the initiation and propagation parameters of these events to establish the precise CME-interplanetary CME (ICME) connection and their near-Earth consequences. The first event is associated with poor geomagnetic storm disturbance index (Dst ≈-20 nT) while the second event is associated with an intense geomagnetic storm of DST ≈-119 nT. The configuration of the sunspots in the active regions and their evolution are observed by Helioseismic and Magnetic Imager (HMI). For source region imaging, we rely on data obtained from Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO) and Hα filtergrams from the Solar Tower Telescope at Aryabhatta Research Institute of Observational Sciences (ARIES). For both the CMEs, flux rope eruptions from the source region triggered flares of similar intensities (≈M1). At the solar source region of the eruptions,we observed a circular ribbon flare (CRF) for both cases, suggesting fan-spine magnetic configuration in the active region corona. The multi-channel SDO observations confirm that the eruptive flares and subsequent CMEs were intimately related to the filament eruption. Within the Large Angle and Spectrometric Coronograph (LASCO) field of view (FOV) thetwo CMEs propagated with linear speeds of 671 and 631 km s−1, respectively. These CMEs were tracked up to the Earth by Solar Terrestrial Relations Observatory (STEREO) instruments. We find that the source region evolution of CMEs, guided by the large-scale coronal magnetic field configuration, along with near-Sun propagation characteristics, such as CME-CME interactions, played important roles in deciding the evolution of CMEs in the interplanetary medium and subsequently their geoeffectiveness.


2022 ◽  
Vol 21 (12) ◽  
pp. 312
Author(s):  
Johan Muhamad ◽  
Muhamad Zamzam Nurzaman ◽  
Tiar Dani ◽  
Arun Relung Pamutri

Abstract During the lifetime of AR 12673, its magnetic field evolved drastically and produced numerous large flares. In this study, using full maps of the Sun observed by the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory, we identified that AR 12673 emerged in decayed AR 12665, which had survived for two solar rotations. Although both ARs emerged at the same location, they possessed different characteristics and different flare productivities. Therefore, it is important to study the long-term magnetic evolution of both ARs to identify the distinguishing characteristics of an AR that can produce large solar flares. We used the Space-weather Helioseismic and Magnetic Imager Active Region Patch data to investigate the evolution of the photospheric magnetic field and other physical properties of the recurring ARs during five Carrington rotations. All these investigated parameters dynamically evolved through a series of solar rotations. We compared the long-term evolution of AR 12665 and AR 12673 to understand the differences in their flare-producing properties. We also studied the relation of the long-term evolution of these ARs with the presence of active longitude. We found that the magnetic flux and complexity of AR 12673 developed much faster than those of AR 12665. Our results confirmed that a strong emerging flux that emerged in the pre-existing AR near the active longitude created a very strong and complex AR that produced large flares.


2022 ◽  
Vol 21 (12) ◽  
pp. 313
Author(s):  
Francesca Zuccarello ◽  
Ilaria Ermolli ◽  
Marianna B. Korsós ◽  
Fabrizio Giorgi ◽  
Salvo L. Guglielmino ◽  
...  

Abstract Solar eruptive events, like flares and coronal mass ejections, are characterized by the rapid release of energy that can give rise to emission of radiation across the entire electromagnetic spectrum and to an abrupt significant increase in the kinetic energy of particles. These energetic phenomena can have important effects on the space weather conditions and therefore it is necessary to understand their origin, in particular, what is the eruptive potential of an active region (AR). In these case studies, we compare two distinct methods that were used in previous works to investigate the variations of some characteristic physical parameters during the pre-flare states of flaring ARs. These methods consider: i) the magnetic flux evolution and magnetic helicity accumulation, and ii) the fractal and multi-fractal properties of flux concentrations in ARs. Our comparative analysisis based on time series of photospheric data obtained bythe Solar Dynamics Observatory between March 2011 and June 2013. We selected two distinct samples of ARs: one is distinguished by the occurrence of more energetic M- and X-class flare events, that may have a rapid effect on not just the near-Earth space, but also on the terrestrial environment; the second is characterized by no-flares or having just a few C- and B-class flares. We foundthat the two tested methods complement each other in their ability to assess the eruptive potentials of ARs and could be employed to identify ARs prone to flaring activity. Based on the presented case study, we suggest that using a combination of different methods may aid to identify more reliably the eruptive potentials of ARs and help to better understand the pre-flare states.


2021 ◽  
Vol 923 (1) ◽  
pp. 84
Author(s):  
Ana Belén Griñón-Marín ◽  
Adur Pastor Yabar ◽  
Yang Liu ◽  
J. Todd Hoeksema ◽  
Aimee Norton

Abstract A spectral line inversion code, Very Fast Inversion of the Stokes Vector (VFISV), has been used since 2010 May to infer the solar atmospheric parameters from the spectropolarimetric observations taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. The magnetic filling factor, the fraction of the surface with a resolution element occupied by magnetic field, is set to have a constant value of 1 in the current version of VFISV. This report describes an improved inversion strategy for the spectropolarimetric data observed with HMI for magnetic field strengths of intermediate values in areas spatially not fully resolved. The VFISV inversion code has been modified to enable inversion of the Stokes profiles with two different components: one magnetic and one nonmagnetic. In this scheme, both components share the atmospheric components except for the magnetic field vector. In order to determine whether the new strategy is useful, we evaluate the inferred parameters inverted with one magnetic component (the original version of the HMI inversion) and with two components (the improved version) using a Bayesian analysis. In pixels with intermediate magnetic field strengths (e.g., plages), the new version provides statistically significant values of filling fraction and magnetic field vector. Not only does the fitting of the Stokes profile improve, but also the inference of the magnetic parameters and line-of-sight velocity are obtained uniquely. The new strategy is also proven to be effective for mitigating the anomalous hemispheric bias in the east–west magnetic field component in moderate field regions.


2021 ◽  
Vol 922 (2) ◽  
pp. 232
Author(s):  
Zheng Deng ◽  
Feng Wang ◽  
Hui Deng ◽  
Lei. Tan ◽  
Linhua Deng ◽  
...  

Abstract Improving the performance of solar flare forecasting is a hot topic in the solar physics research field. Deep learning has been considered a promising approach to perform solar flare forecasting in recent years. We first used the generative adversarial networks (GAN) technique augmenting sample data to balance samples with different flare classes. We then proposed a hybrid convolutional neural network (CNN) model (M) for forecasting flare eruption in a solar cycle. Based on this model, we further investigated the effects of the rising and declining phases for flare forecasting. Two CNN models, i.e., M rp and M dp, were presented to forecast solar flare eruptions in the rising phase and declining phase of solar cycle 24, respectively. A series of testing results proved the following. (1) Sample balance is critical for the stability of the CNN model. The augmented data generated by GAN effectively improved the stability of the forecast model. (2) For C-class, M-class, and X-class flare forecasting using Solar Dynamics Observatory line-of-sight magnetograms, the means of the true skill statistics (TSS) scores of M are 0.646, 0.653, and 0.762, which improved by 20.1%, 22.3%, and 38.0% compared with previous studies. (3) It is valuable to separately model the flare forecasts in the rising and declining phases of a solar cycle. Compared with model M, the means of the TSS scores for No-flare, C-class, M-class, and X-class flare forecasting of the M rp improved by 5.9%, 9.4%, 17.9%, and 13.1%, and those of the M dp improved by 1.5%, 2.6%, 11.5%, and 12.2%.


2021 ◽  
Vol 922 (2) ◽  
pp. 238
Author(s):  
De-Chao Song ◽  
Y. Li ◽  
Y. Su ◽  
M. D. Ding ◽  
W. Q. Gan

Abstract In this paper, we present a detailed morphological, kinematic, and thermal analysis of two homologous magnetic flux ropes (MFRs) from NOAA 11515 on 2012 July 8–9. The study is based on multiwavelength and dual-perspective imaging observations from the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory Ahead spacecraft, which can reveal the structure and evolution of the two MFRs. We find that both of the MFRs show up in multiple passbands and their emissions mainly consist of a cold component peaking at a temperature of ∼0.4–0.6 MK and a hot component peaking at ∼7–8 MK. The two MFRs exhibit erupting, expanding, and untwisting motions that manifest distinctive features from two different viewpoints. Their evolution can be divided into two stages—a fast-eruption stage with speeds of about 105–125 km s−1 for MFR-1 and 50–65 km s−1 for MFR-2—and a slow-expansion (or untwisting) stage with speeds of about 10–35 km s−1 for MFR-1 and 10–30 km s−1 for MFR-2 in the plane of the sky. We also find that during the two-stage evolution, the high-temperature features mainly appear in the interface region between MFRs and ambient magnetic structures and also in the center of MFRs, which suggests that some heating processes take place in such places as magnetic reconnection and plasma compression. These observational results indicate that the eruption and untwisting processes of MFRs are coupled with the heating process, among which an energy conversion exists.


Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Peter R. Young ◽  
Nicholeen M. Viall ◽  
Michael S. Kirk ◽  
Emily I. Mason ◽  
Lakshmi Pradeep Chitta

AbstractThe Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) returns high-resolution images of the solar atmosphere in seven extreme ultraviolet (EUV) wavelength channels. The images are processed on the ground to remove intensity spikes arising from energetic particles hitting the instrument, and the despiked images are provided to the community. In this article, a three-hour series of images from the 171 Å channel obtained on 28 February 2017 was studied to investigate how often the despiking algorithm gave false positives caused by compact brightenings in the solar atmosphere. The latter were identified through spikes appearing in the same detector pixel for three consecutive frames. 1096 examples were found from the 900 image frames. These “three-spikes” were assigned to 126 dynamic solar features, and it is estimated that the three-spike method identifies 19% of the total number of features affected by despiking. For any ten-minute sequence of AIA 171 Å images there are around 37 solar features that have their intensity modified by despiking. The features are found in active regions, quiet Sun, and coronal holes and, in relation to solar surface area, there is a greater proportion within coronal holes. In 96% of the cases, the despiked structure is a compact brightening with a size of two arcsec or less, and the remaining 4% have narrow, elongated structures. By applying an EUV burst detection algorithm, we found that 96% of the events could be classified as EUV bursts. None of the spike events are rendered invisible by the AIA processing pipeline, but the total intensity over an event’s lifetime can be reduced by up to 67%. Users are recommended to always restore the original intensities in AIA data when studying short-lived or rapidly evolving features that exhibit fine-scale structure.


2021 ◽  
Vol 923 (2) ◽  
pp. 276
Author(s):  
Pascal Saint-Hilaire ◽  
Juan Carlos Martínez Oliveros ◽  
Hugh S. Hudson

Abstract Polarized scattered light from low (few tens of megameter altitudes) coronal transients has been recently reported in Solar Dynamics Observatory/Helioseismic and Magnetic Image (HMI) observations. In a classic paper, Minnaert (1930) provided an analytic theory of polarization via electron scattering in the corona. His work assumed axisymmetric input from the photosphere with a single-parameter limb-darkening function. This diagnostic has recently been used to estimate the free-electron number and mass of HMI transients near the solar limb, but it applies equally well to any coronal material, at any height. Here we extend his work numerically to incorporate sunspots, which can strongly effect the polarization properties of the scattered light in the low corona. Sunspot effects are explored first for axisymmetric model cases, and then applied to the full description of two sunspot groups as observed by HMI. We find that (1) as previously reported by Minnaert, limb darkening has a strong influence, usually increasing the level of linear polarization tangential to the limb; (2) unsurprisingly, the effects of the sunspot generally increase at the lower scatterer altitudes, and increase the larger the sunspot is and the closer to their center the scatterer subpoint is; (3) assuming the Stokes Q > 0 basis to be tangential to the limb, sunspots typically decrease the Stokes Q/I polarization and the perceived electron densities below the spotless case, sometimes dramatically; and (4) typically, a sizeable non-zero Stokes U/I polarization component will appear when a sunspot’s influence becomes non-negligible. However, that is not true in rare cases of extreme symmetry (e.g., scattering mass at the center of an axisymmetric sunspot). The tools developed here are generally applicable to an arbitrary image input.


Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Conrad Schwanitz ◽  
Louise Harra ◽  
Nour E. Raouafi ◽  
Alphonse C. Sterling ◽  
Alejandro Moreno Vacas ◽  
...  

AbstractRecent observations from Parker Solar Probe have revealed that the solar wind has a highly variable structure. How this complex behaviour is formed in the solar corona is not yet known, since it requires omnipresent fluctuations, which constantly emit material to feed the wind. In this article we analyse 14 upflow regions in the solar corona to find potential sources for plasma flow. The upflow regions are derived from spectroscopic data from the EUV Imaging Spectrometer (EIS) on board Hinode determining their Doppler velocity and defining regions which have blueshifts stronger than $-6~\mbox{km}\,\mbox{s}^{-1}$ − 6 km s − 1 . To identify the sources of these blueshift data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), on board the Solar Dynamics Observatory (SDO), and the X-ray Telescope (XRT), on board Hinode, are used. The analysis reveals that only 5 out of 14 upflows are associated with frequent transients, like obvious jets or bright points. In contrast to that, seven events are associated with small-scale features, which show a large variety of dynamics. Some resemble small bright points, while others show an eruptive nature, all of which are faint and only live for a few minutes; we cannot rule out that several of these sources may be fainter and, hence, less obvious jets. Since the complex structure of the solar wind is known, this suggests that new sources have to be considered or better methods used to analyse the known sources. This work shows that small and frequent features, which were previously neglected, can cause strong upflows in the solar corona. These results emphasise the importance of the first observations from the Extreme-Ultraviolet Imager (EUI) on board Solar Orbiter, which revealed complex small-scale coronal structures.


Sign in / Sign up

Export Citation Format

Share Document