scholarly journals Rotational Velocities of Am and Non-chemical-peculiar Stars Based on Kepler and LAMOST DR5

2021 ◽  
Vol 162 (1) ◽  
pp. 32
Author(s):  
Li Qin ◽  
A-Li Luo ◽  
Wen Hou ◽  
Yin-Bi Li ◽  
Kai-Ming Cui ◽  
...  
Keyword(s):  
2007 ◽  
Vol 328 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Z. Mikulášek ◽  
J. Janík ◽  
J. Zverko ◽  
J. Žižňovský ◽  
M. Zejda ◽  
...  

2008 ◽  
Vol 4 (S252) ◽  
pp. 347-348
Author(s):  
J. Krtička ◽  
Z. Mikulášek ◽  
J. Zverko ◽  
J. Žižňovský ◽  
P. Zvěřina

AbstractThe magnetic chemically peculiar stars exhibit both inhomogeneous horizontal distribution of chemical elements on their surfaces and the light variability. We show that the observed light variability of these stars can be successfully simulated using models of their stellar atmospheres and adopting the observed surface distribution of elements. The most important elements that influence the light variability are silicon, iron, and helium.


1982 ◽  
Vol 18 (1) ◽  
pp. 343-360 ◽  
Author(s):  
W.K. Bonsack

During the interval covered by this report, Commission 29 has sponsored or cosponsored the following IAU meetings: Symposium 98 on “Be Stars,” Munich, FRG, April 1981; Colloquium 59, “Effects of Mass-Loss on Stellar Evolution,” Trieste, Italy, September 1980; and Colloquim 70, “The Nature of Symbiotic Stars,” Haute-Provence, France, August 1981. In addition, Commission 29, through its Working Group on Ap Stars, collaborated in the organization of the 23rd Liege International Astrophysical Symposium on Upper Main-Sequence Chemically Peculiar Stars. Several IAU symposia and colloquia proposed for 1982 and 1983 are also cosponsored by Commission 29.


2018 ◽  
Vol 616 ◽  
pp. A77 ◽  
Author(s):  
D. M. Bowman ◽  
B. Buysschaert ◽  
C. Neiner ◽  
P. I. Pápics ◽  
M. E. Oksala ◽  
...  

Context. The physics of magnetic hot stars and how a large-scale magnetic field affects their interior properties is largely unknown. Few studies have combined high-quality observations and modelling of magnetic pulsating stars, known as magneto-asteroseismology, primarily because of the dearth of detected pulsations in stars with a confirmed and well-characterised large-scale magnetic field. Aims. We aim to characterise observational signatures of rotation and pulsation in chemically peculiar candidate magnetic stars using photometry from the K2 space mission. Thus, we identify the best candidate targets for ground-based, optical spectropolarimetric follow-up observations to confirm the presence of a large-scale magnetic field. Methods. We employed customised reduction and detrending tools to process the K2 photometry into optimised light curves for a variability analysis. We searched for the periodic photometric signatures of rotational modulation caused by surface abundance inhomogeneities in 56 chemically peculiar A and B stars. Furthermore, we searched for intrinsic variability caused by pulsations (coherent or otherwise) in the amplitude spectra of these stars. Results. The rotation periods of 38 chemically peculiar stars are determined, 16 of which are the first determination of the rotation period in the literature. We confirm the discovery of high-overtone roAp pulsation modes in HD 177765 and find an additional 3 Ap and Bp stars that show evidence of high-overtone pressure modes found in roAp stars in the form of possible Nyquist alias frequencies in their amplitude spectra. Furthermore, we find 6 chemically peculiar stars that show evidence of intrinsic variability caused by gravity or pressure pulsation modes. Conclusions. The discovery of pulsations in a non-negligible fraction of chemically peculiar stars make these stars high-priority targets for spectropolarimetric campaigns to confirm the presence of their expected large-scale magnetic field. The ultimate goal is to perform magneto-asteroseismology and probe the interior physics of magnetic pulsating stars.


Sign in / Sign up

Export Citation Format

Share Document