temperature behavior
Recently Published Documents


TOTAL DOCUMENTS

1301
(FIVE YEARS 95)

H-INDEX

62
(FIVE YEARS 2)

Author(s):  
I. Abbasov ◽  
M. Musayev ◽  
D. Askerov ◽  
J. Huseynov ◽  
E. Gavrishuk ◽  
...  

In the given paper, the temperature dependences ([Formula: see text]–300 K) of the green band intensity at wavelengths [Formula: see text] nm and [Formula: see text] nm have been measured and observed, respectively, from the polished and unpolished surface (PS and unPS) of a polycrystalline CVD (chemical vapor deposition) ZnSe sample upon excitation by X-ray quanta ([Formula: see text]. In both cases, the activation energy of thermal quenching has been determined, and the reasons for thermal quenching have been considered in detail. Along with XRL spectra analysis, the temperature behavior of the green band observed upon excitation by an ultraviolet (UV) laser (He–Cd, [Formula: see text] nm) from the PS and unPS in the temperature range [Formula: see text]–200 K has been discussed in more detail.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 518
Author(s):  
Alexander Ponomarev ◽  
Valeriy Egorushkin ◽  
Nadezhda Bobenko ◽  
Maksym Barabashko ◽  
Anastasiya Rezvanova ◽  
...  

Structural disorder and temperature behavior of specific heat in multi walled carbon nanotubes (MWCNTs) have been investigated. The results of X-ray diffractometry, Raman spectroscopy, and transmission electron microscopy (TEM) images are analyzed. The thermodynamic theory of the zigzag-armchair domain structure formation during nanotube synthesis is developed. The influence of structural disorder on the temperature behavior of specific heat is investigated. The size of domains was estimated at ~40 nm. A decrease in heat capacity is due to this size effect. The revealed dependence of the heat capacity of MWCNTs on the structural disorder allows control over thermal properties of nanotubes and can be useful for the development of thermoelectric, thermal interface materials and nanofluids based on them.


Atomic Energy ◽  
2022 ◽  
Author(s):  
G. V. Kulakov ◽  
Yu. V. Konovalov ◽  
A. V. Vatulin ◽  
A. A. Kosaurov ◽  
V. Yu. Shishin ◽  
...  

2022 ◽  
Vol 64 (1) ◽  
pp. 25
Author(s):  
С.В. Комогорцев ◽  
С.В. Семенов ◽  
С.Н. Варнаков ◽  
Д.А. Балаев

Investigation of the temperature evolution of magnetization curves near magnetic saturation makes it possible to extract new information on the features of the phase composition and structure of hypoeutectoid steel. It is shown that the main contribution to the magnitude and the temperature behavior of the energy density of the local magnetic anisotropy of hypoeutectoid steel is due to the lamellar structure of pearlite. The peculiarity of the temperature behavior of the energy of the magnetic anisotropy, along with the behavior of the paraprocess, indicates the formation of Mn-substituted cementite in the studied steel sample. The observation of the crossover of power-law regularities in the approximation of magnetization to saturation indicates the formation of two-dimensional nano-inhomogeneities of the local axis of easy magnetization in the plates of alpha iron, which are part of the pearlite.


2021 ◽  
Author(s):  
Md. D. Hossain ◽  
Carlos Fitzgerald Grandes Reyes ◽  
Changhe Zhang ◽  
Sung-Po R. Chen ◽  
Michael J. Monteiro

2021 ◽  
Author(s):  
Alex Latyshev ◽  
Andrew G Semenov ◽  
Andrei D Zaikin

We investigate plasma oscillations in long electromagnetically coupled superconducting nanowires. We demonstrate that in the presence of inter-wire coupling plasma modes in each of the wires get split into two "new" modes propagating with different velocities across the system. These plasma modes form an effective dissipative quantum environment interacting with electrons inside both wires and causing a number of significant implications for low temperature behavior of the systems under consideration.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fuhai Wang ◽  
Tuo Huang ◽  
Gongfeng Xin ◽  
Minghao Mu ◽  
Quanjun Shen

As a new type of pavement material, bioasphalt has received more and more attention. However, the high-temperature behavior of bioasphalt is poor after blending with asphalt binder. In order to solve this problem and facilitate the waste utilization and resource conservation, the corn stalk bioasphalt/PPA composite modified asphalt was proposed. The conventional performance tests and rheological tests were conducted to evaluate high-temperature and low-temperature behavior. Fourier transform infrared reflection (FTIR) test was undertaken to analyze the mechanism of modified asphalt. The results indicated that blended asphalt penetration and ductility gradually decrease with the PPA content increasing. The softening point and viscosity of the modified asphalt increased, which led to an improvement of blended asphalt’s rigidity. The PPA increased the rutting index of corn stalk bioasphalt/PPA composite modified asphalt. However, bioasphalt had a negative effect on its high-temperature performance. The corn stalk bioasphalt/PPA composite modified asphalt could meet the specification requirement at −18°C considering the creep rate and stiffness modulus, indicating it had outstanding crack resistance. When the PPA and bioasphalt respect to the weight of neat asphalt were 6%–8% and 10%–16%, respectively, the corn stalk bioasphalt/PPA composite modified asphalt performance was optimal. However, shear time and shear rate merely affected the proposed modified asphalt performance. The bioasphalt did not affect the chemical structure of asphalt. However, PPA generated new functional groups (P-O single bond, phosphate (RO)3P = O, and P=O double bond) causing a chemical modification in the asphalt binder. This study can provide a basis for applying bioasphalt, making road engineering more economical and environmentally friendly.


Sign in / Sign up

Export Citation Format

Share Document