scholarly journals Lorentz Invariance Violation Effects on Gamma–Gamma Absorption and Compton Scattering

2018 ◽  
Vol 865 (2) ◽  
pp. 159 ◽  
Author(s):  
Hassan Abdalla ◽  
Markus Böttcher
2019 ◽  
Vol 15 (S356) ◽  
pp. 364-364
Author(s):  
Hassan Abdalla

AbstractAt energies approaching the Planck energy scale 1019GeV, several quantum-gravity theories predict that familiar concepts such as Lorentz (LIV) symmetry can be broken. Such extreme energies are currently unreachable by experiments on Earth, but for photons traveling over cosmological distances the accumulated deviations from the Lorentz symmetry may be measurable using the Cherenkov Telescope Array (CTA). To study the spectral hardening feature observed in some VHE gamma-ray blazars, we calculate the reduction of the EBL gamma-gamma opacity due to the existence of underdense regions along the line of sight to VHE -gamma ray sources and we compared with the possibility of a LIV signature. Considering the LIV effect, we found that the cosmic opacity for VHE-gamma rays with energy more than 10 TeV can be strongly reduced. I will further discuss the impact of LIV on the Compton scattering process, and how future CTA observations may open an exciting window on studies of the fundamental physics.


Author(s):  
M. A. Knyazev

In this paper a (1+1)-dimension equation of motion for φ4-theory is considered for the case of simultaneously taking into a account of the processes of dissipation and violation the Lorentz-invariance. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. To this end, the modified direct Hirota method for solving the nonlinear partial derivatives equations was used. A modification of the method lead to special conditions on the parameters of the model and the solution.


Sign in / Sign up

Export Citation Format

Share Document