gamma absorption
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Brian van Soelen ◽  
Drikus du Plooy
Keyword(s):  

2020 ◽  
Author(s):  
Drikus du Ploy ◽  
Brian van Soelen

2020 ◽  
Vol 225 ◽  
pp. 04003 ◽  
Author(s):  
R. Van Nieuwenhove ◽  
L. Vermeeren

A gamma thermometer suitable for very high gamma heating levels (up to 20 W/g) has been designed and modelled by means of detailed finite element calculations. Based on a sensitivity analysis, the predicted accuracy of this gamma thermometer is better than 5 %. A novel miniaturized gamma thermometer is proposed in which a single thermocouple is used as the gamma absorption element, allowing a reduction of the sensor diameter down to 3 mm. Monte Carlo calculations (by MCNP) have been performed to assess the relative contribution of neutrons to the nuclear heating in a gamma thermometer. Calculations have been performed for gamma thermometers with an inner body made of various materials, such as stainless steel, tungsten, molybdenum and rhodium. By using gamma thermometers made of different materials, it will be possible to deduce the nuclear heating rates in these materials and also to separate out the neutron and gamma heating contributions. The Monte Carlo calculations show that nuclear heating of rhodium is mainly due to neutrons, converting the rhodium gamma thermometer effectively in a neutron thermometer. The sensitivities of the gamma thermometers with W, Mo or Rh as heated materials have been modelled by finite element calculations. It is found that both the Mo and the Rh based sensor have a very linear response up to a nuclear heating of 20 W/g.


2019 ◽  
Vol 15 (S356) ◽  
pp. 364-364
Author(s):  
Hassan Abdalla

AbstractAt energies approaching the Planck energy scale 1019GeV, several quantum-gravity theories predict that familiar concepts such as Lorentz (LIV) symmetry can be broken. Such extreme energies are currently unreachable by experiments on Earth, but for photons traveling over cosmological distances the accumulated deviations from the Lorentz symmetry may be measurable using the Cherenkov Telescope Array (CTA). To study the spectral hardening feature observed in some VHE gamma-ray blazars, we calculate the reduction of the EBL gamma-gamma opacity due to the existence of underdense regions along the line of sight to VHE -gamma ray sources and we compared with the possibility of a LIV signature. Considering the LIV effect, we found that the cosmic opacity for VHE-gamma rays with energy more than 10 TeV can be strongly reduced. I will further discuss the impact of LIV on the Compton scattering process, and how future CTA observations may open an exciting window on studies of the fundamental physics.


2018 ◽  
Vol 180 ◽  
pp. 02032
Author(s):  
Robert Hanus ◽  
Marcin Zych ◽  
Marek Jaszczur ◽  
Leszek Petryka ◽  
Dariusz Świsulski

The paper presents application of the gamma-absorption method to a two-phase liquid-gas flow investigation in a horizontal pipeline. The water-air mixture was examined by a set of two Am-241 radioactive sources and two NaI(Tl) scintillation probes. For analysis of the electrical signals obtained from detectors the cross-spectral density function (CSDF) was applied. Results of the gas phase average velocity measurements for CSDF were compared with results obtained by application of the classical cross-correlation function (CCF). It was found that the combined uncertainties of the gas-phase velocity in the presented experiments did not exceed 1.6% for CSDF method and 5.5% for CCF.


Sign in / Sign up

Export Citation Format

Share Document