scholarly journals The Low Effective Spin of Binary Black Holes and Implications for Individual Gravitational-wave Events

2020 ◽  
Vol 895 (2) ◽  
pp. 128 ◽  
Author(s):  
Simona Miller ◽  
Thomas A. Callister ◽  
Will M. Farr
2020 ◽  
Vol 498 (3) ◽  
pp. 3946-3963 ◽  
Author(s):  
Tomoya Kinugawa ◽  
Takashi Nakamura ◽  
Hiroyuki Nakano

ABSTRACT We performed Population III (Pop III) binary evolution using population synthesis simulations for seven different models. We found that Pop III binaries tend to be binary black holes (BBHs) with chirp mass Mchirp ∼ 30 M⊙ and they can merge in the present day, due to a long merger time. The merger rate densities of Pop III BBHs at z = 0 are in the range 3.34–21.2 $\rm yr^{-1}\,Gpc^{-3}$ which is consistent with the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO)/Advanced Virgo (aVIRGO) result of 9.7–101 $\rm yr^{-1}\,Gpc^{-3}$. These Pop III binaries might contribute some portion of the massive BBH gravitational wave (GW) sources detected by aLIGO/aVIRGO. We also calculated the redshift dependence of Pop III BBH mergers. We found that Pop III low-spin BBHs tend to merge at low redshift, while Pop III high-spin BBHs merge at high redshift, which can be confirmed by future GW detectors such as Einstein Telescope (ET), Cosmic Explorer (CE), and DECi-hertz Interferometer Gravitational wave Observatory (DECIGO). These detectors can also check the redshift dependence of the BBH merger rate and spin distribution. Our results show that, except for one model, the mean effective spin 〈χeff〉 at z = 0 lies in the range 0.02–0.3, while at z = 10 it is 0.16–0.64. Therefore, massive stellar-mass BBH detection by GWs will be key for stellar evolution study in the early Universe.


Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Stephen Privitera ◽  
Satyanarayan R. P. Mohapatra ◽  
Parameswaran Ajith ◽  
Kipp Cannon ◽  
Nickolas Fotopoulos ◽  
...  

2016 ◽  
Vol 116 (13) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
M. R. Abernathy ◽  
F. Acernese ◽  
...  

2017 ◽  
Vol 95 (6) ◽  
Author(s):  
Salvatore Vitale ◽  
Ryan Lynch ◽  
Vivien Raymond ◽  
Riccardo Sturani ◽  
John Veitch ◽  
...  

2018 ◽  
Vol 62 (12) ◽  
pp. 940-952
Author(s):  
J. F. Rodriguez ◽  
J. A. Rueda ◽  
R. Ruffini

2016 ◽  
Vol 12 (S329) ◽  
pp. 118-125 ◽  
Author(s):  
Konstantin Postnov ◽  
Alexander Kuranov

AbstractPossible formation mechanisms of massive close binary black holes that can merge in the Hubble time to produce powerful gravitational wave bursts detected during advanced LIGO O1 science run are briefly discussed. The pathways include the evolution from field low-metallicity massive binaries, the dynamical formation in globular clusters and primordial black holes. Low effective black hole spins inferred for LIGO GW150914 and LTV151012 events are discussed. Population synthesis calculations of the expected spin and chirp mass distributions from the standard field massive binary formation channel are presented for different metallicities (from zero-metal Population III stars up to solar metal abundance). We conclude that that merging binary black holes can contain systems from different formation channels, discrimination between which can be made with increasing statistics of mass and spin measurements from ongoing and future gravitational wave observations.


2016 ◽  
Vol 461 (4) ◽  
pp. 3877-3885 ◽  
Author(s):  
Irina Dvorkin ◽  
Elisabeth Vangioni ◽  
Joseph Silk ◽  
Jean-Philippe Uzan ◽  
Keith A. Olive

Sign in / Sign up

Export Citation Format

Share Document