scholarly journals Energy Conversion between Ions and Electrons through Ion Cyclotron Waves and Embedded Ion-scale Rotational Discontinuity in Collisionless Space Plasmas

2020 ◽  
Vol 904 (2) ◽  
pp. L16
Author(s):  
Qiaowen Luo ◽  
Jiansen He ◽  
Jun Cui ◽  
Xingyu Zhu ◽  
Die Duan ◽  
...  
1997 ◽  
Vol 102 (A1) ◽  
pp. 175-184 ◽  
Author(s):  
G. V. Khazanov ◽  
E. N. Krivorutsky ◽  
T. E. Moore ◽  
M. W. Liemohn ◽  
J. L. Horwitz

2021 ◽  
Author(s):  
Qiaowen Luo ◽  
Xingyu Zhu ◽  
Jiansen He ◽  
Jun Cui ◽  
Hairong Lai ◽  
...  

<p>Ion cyclotron resonance is one of the fundamental energy conversion processes through wave field-particle interaction in collisionless plasma. However, the key evidence for cyclotron resonance (i.e., the coherence between wave field and ion phase space density pertaining to the ion cyclotron resonance and responsible for the dissipation of ion cyclotron waves (ICWs)) has yet to be directly observed. Based on the high-quality measurements of space plasma by the Magnetospheric Multiscale (MMS) satellites, we observe that both the wave electromagnetic field vectors and the disturbed ion velocity distribution rotate around the background magnetic field. Moreover, we find that the gyrophase angle difference between the fluctuations in the ion velocity distribution functions and the wave electric field vectors are always in the range of (0, 90) degrees, clearly suggesting the ongoing energy conversion from wave fields to particles. By invoking plasma kinetic theory, we find that the field-particle correlation for the dissipative ion cyclotron waves in the theoretical model matches well with our observations. Furthermore, all the wave electric field vectors (Ewave), the ion current (Ji) and the energy transfer rate (Ji ·Ewave) exhibit quasi-periodic oscillations, and the frequency of Ji ·Ewave is about twice the frequency of Ewave and Ji, consistent with plasma kinetic theory. Therefore, our combined analysis of MMS observations and kinetic theory provides direct, thorough, and comprehensive evidence for ICW dissipation in space plasmas.</p>


2005 ◽  
Vol 23 (8) ◽  
pp. 2803-2811 ◽  
Author(s):  
J. B. Cao ◽  
Z. X. Liu ◽  
J. Y. Yang ◽  
C. X. Yian ◽  
Z. G. Wang ◽  
...  

Abstract. LFEW is a low frequency electromagnetic wave detector mounted on TC-2, which can measure the magnetic fluctuation of low frequency electromagnetic waves. The frequency range is 8 Hz to 10 kHz. LFEW comprises a boom-mounted, three-axis search coil magnetometer, a preamplifier and an electronics box that houses a Digital Spectrum Analyzer. LFEW was calibrated at Chambon-la-Forêt in France. The ground calibration results show that the performance of LFEW is similar to that of STAFF on TC-1. The first results of LFEW show that it works normally on board, and that the AC magnetic interference of the satellite platform is very small. In the plasmasphere, LFEW observed the ion cyclotron waves. During the geomagnetic storm on 8 November 2004, LFEW observed a wave burst associated with the oxygen ion cyclotron waves. This observation shows that during geomagnetic storms, the oxygen ions are very active in the inner magnetosphere. Outside the plasmasphere, LFEW observed the chorus on 3 November 2004. LFEW also observed the plasmaspheric hiss and mid-latitude hiss both in the Southern Hemisphere and Northern Hemisphere on 8 November 2004. The hiss in the Southern Hemisphere may be the reflected waves of the hiss in the Northern Hemisphere.


2014 ◽  
Vol 119 (7) ◽  
pp. 5244-5258 ◽  
Author(s):  
H. Y. Wei ◽  
M. M. Cowee ◽  
C. T. Russell ◽  
H. K. Leinweber

Sign in / Sign up

Export Citation Format

Share Document