scholarly journals Co-existence of isodicentric Ph chromosomes and the three-way Ph chromosome variant t(3;9;22)(p21;q34;q11) in a rare case of chronic myeloid leukemia

2018 ◽  
Author(s):  
Qian Li ◽  
Xiao‑Ji Lin ◽  
Hui Chen ◽  
Jian Gong ◽  
Zhen Li ◽  
...  
2005 ◽  
Vol 29 (10) ◽  
pp. 1227-1232 ◽  
Author(s):  
Hermine Agis ◽  
Karl Sotlar ◽  
Peter Valent ◽  
Hans-Peter Horny

Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2171-2175 ◽  
Author(s):  
J Diamond ◽  
JM Goldman ◽  
JV Melo

It has been suggested that the BCR-ABL gene of chronic myeloid leukemia (CML) is not uniformly expressed in Philadelphia (Ph)-positive cells, and that BCR-ABL gene expression precludes transcription of the normal BCR or ABL genes. Therefore, we have analyzed granulocyte-macrophage colony-forming unit (CFU-GM) colonies derived from peripheral blood of 11 CML patients by cytogenetic and by reverse transcriptase-polymerase chain reaction (PCR) amplification of BCR-ABL, ABL-BCR, BCR, and ABL. All CFU-GM colonies with analyzable metaphases were found to contain a Ph chromosome. In 2 patients, the initial PCR screening failed to detect BCR-ABL transcripts in 2 of 11 and 1 of 7 Ph-positive colonies. However, when amplification for BCR-ABL was repeated in quintuplicate, all but 1 colony from a single patient showed one or more positive results. Amplifications of the four genes in each colony showed that BCR-ABL, ABL-BCR, and the normal BCR and ABL were simultaneously expressed in the majority of CFU-GM colonies. Replicate PCR tests for BCR and for ABL in colonies initially scored as negative also uncovered previously undetected positive amplifications. We conclude that BCR-ABL expression does not suppress transcription from the normal BCR and ABL genes, and that Ph-positive, BCR-ABL-negative colonies derived from peripheral blood CFU-GM are rare or nonexistent.


1989 ◽  
Vol 75 (2) ◽  
pp. 106-109
Author(s):  
Luigi M. Larocca ◽  
Marcella Zollino ◽  
Arnaldo Carbone ◽  
Maria Luisa Eboli ◽  
Giorgio Mango ◽  
...  

A patient, with chronic myeloid leukemia and IgA monoclonal gammopathy, who contemporaneously developed myeloid blast crisis and immunoblastic lymphoma is reported. Cytogenetic studies showed complex chromosome abnormalities concerning chromosomes 8, 14 and 22, other than the Ph chromosome. A possible relationship between the emergence of immunoblasts from slow proliferating lymphoplasmacytoid cells, myeloid blasts crisis and chromosomal changes is discussed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4844-4844
Author(s):  
Hana Klamova ◽  
Jana Brezinova ◽  
Kyra Michalova ◽  
Zuzana Zemanova ◽  
Marek Trneny

Abstract Cytogenetic clonal evolution (CE) - the presence of cytogenetic abnormalities in addition to the Ph chromosome in chronic myeloid leukemia (Ph+ CML) is a known poor prognostic factor associated with disease progression. Occurence of additional cytogenetic abnormalities in both Ph positive and Ph negative mitoses was also described in imatinib treated CML patients and was associated with occuring therapy resistance. The long - term significance is so far poorly understood. Objective. To monitor cytogenetic abnormalities in chronic phase CML patients on imatinib treatment, following long-term interferon alfa (IFN) or hydroxyurea treatment. To compare the haematological disease progression in patients with or without cytogenetic evolution Patients and methods: Cytogenetic evolution was analyzed in 57 patients (median age 56, range 18–73) treated with imatinib in chronic phase, following interferon resistance or intolerance. The duration of IFN application was 22 months (range 3 – 46 months), duration of imatinib treatment was 16 months (range 6 – 55 months). Cytogenetic abnormalities were detected by conventional cytogenetics - caryotype analysis and fluorescence in situ hybridisation (FISH). Results: Complete cytogenetic remission was accomplished in 55 of 57 pts (96%) on imatinib, significant or complete cytogenetic response was observed in 36 of 57 patients (66%). Cytogenetic evolution was observed in 11 patients (19%) treated with imatinib: in the Ph+ clone (9 cases) and in the Ph− clone (2 cases). Median duration of imatinib treatment before the CE identification was 16 months (range 7–36 months). The most common additional abnormality was trisomy 8 (8 pts), second Ph chromosome (4 pts), and del (17) (4 pts). In 5 cases we observed the simultaneous occurence of two different cytogenetic abnormalities. Haematological progression was observed in 7 of 11 patients (63%) following 2 – 22 months imatinib treatment (median 9 months). 5 pts (46%) exited. Six patients live 8–22 months from the detection of cytogenetic evolution. Secondary malignancy was diagnosed in 1 patient. In the group of patients without cytogenetic evolution haematological progression was observed only in 9 of 46 (19.5%) cases, 4 patients died (14.3%). Conclusion: The role of IM concerning the cytogenetic evolution occurence in CML patients is not so far clear, the suppression of the Ph+ clone could enhance the proliferation of resistant ones. In our group of patients CE was documented in 11 patients (19%), in both Ph+ and Ph− cells. Significantly higher was the risk of haematological progression. CML patients treated with imatinib should be regularly monitored with conventional cytogenetic techniques, not only to follow the decrease in the proportion of Ph-positive cells, but also to look for new especially Ph-negative clonal chromosomal abnormalities. A longer follow-up time and systematic monitoring of cytogenetics is needed to establish the prognostic impact of clonal evolution in CML patients treated with imatinib.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3228-3228 ◽  
Author(s):  
Nicolas Batty ◽  
Hagop Kantarjian ◽  
Gautam Borthakur ◽  
Farhad Ravandi ◽  
Susan O’Brien ◽  
...  

Abstract Background: Variant Philadelphia chromosome (Ph) translocations frequently involving 1-2 additional chromosomes besides 9 and 22 and represent 5–10% of patients (pts) with chronic myeloid leukemia (CML). The European LeukemiaNet recommendations provide a warning for patients with variant translocations, although there is limited information about their outcome after therapy with tyrosine kinase inhibitors (TKI). Our prior analysis mostly among pts who had failed prior interferon suggested that these pts had similar outcome to those with classic Ph translocations when treated with imatinib (El-Zimaity et al; Br. J Haematol 2004). Aims: To explore the characteristics and outcome of patients with variant translocations treated with frontline imatinib or 2nd generation TKI (dasatinib or nilotinib) after imatinib failure. Methods: We reviewed the outcome of all pts with CML treated at our institution in 3 groups: early chronic phase (CP) receiving imatinib as initial therapy, and CP treated with 2nd generation TKI after Imatinib failure, accelerated phase (AP) treated with 2nd TKI after imatinib failure. Results of pts with variant Ph were compared to those with classic Ph. Results: Among 554 pts (278 CP frontline imatinib, 190 CP post imatinib failure, 86 AP post Imatinib failure) 33 (6%) had variant Ph (21[8%], 6[3%], 6[7%], in each of the 3 groups, respectively). Median follow up is 55 months (mo) (2 – 90), 24 (1 – 53) mo and 29 (5 – 46) mo, respectively, for the 3 groups. Results are summarized in the following tables: Frontline Imatinib Therapy Percentage Variant Ph Classic Ph P value N=21 N=255 MCyR 95 95 1 CCyR 86 89 0.49 2-yr EFS 83 93 0.93 2-yr TFS 94 96 0.7 2-yr OS 100 99 0.48 Second generation TKI Variant Ph Chromosome Variant Ph Classic Ph P value Chronic Phase N = 6 N = 78 MCyR 100 75 0.34 CCyR 100 72 0.34 2-yr EFS 100 80 0.27 2-yr OS 100 98 0.71 Accelerated Phase N=6 N=80 MCyR 33 38 1 CCyR 33 32 1 2-yr EFS 25 41 0.41 2-yr OS 100 89 0.44 Conclusion: Pts with variant Ph have a similar prognosis to those with classic Ph translocations when treated with imatinib as initial therapy or with 2nd generation TKI after imatinib failure. The warning category for these patients may no longer be needed in the era of TKI.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4839-4839
Author(s):  
Rossana Bonomi ◽  
Pablo Lopez ◽  
Daniela Infante ◽  
Isabel Moro ◽  
Victoria Elizondo ◽  
...  

Abstract Abstract 4839 Introduction. Chronic myeloid leukemia (CML) is characterized by the Philadelphia chromosome (Ph) observed in more than 90% of patients with CML as a result of t(9;22)(q34;q11), leading to the formation of chimeric gene BCR/ABL encoding for proteins with abnormal tyrosine kinase activity. Cytogenetic variants of Ph chromosome can be identifed in 5 to 10% of CML patients, involving additional chromosomes other than 9 and 22. To explain the formation of variant translocations one-step, two-step and multi-step mechanisms have been proposed. Rarely, the variant Ph chromosome results from a BCR insertion on the ABL region and form a BCR/ABL fusion gene, generally mapping to 9q34, instead of the usual location at 22q11. In very few variant Ph cases, the insertion of the BCR/ABL product in a third chromosome was demonstrated. Case Report 28 year-old man, with bilateral central scotoma and gingivorragia. Physical examination: Grade 4 splenomegaly. Peripheral blood count showed hemoglobin concentration 11.5 g/dl, platelet count: 300.000/mm3, and white blood cell count 590.000/mm3. Blood smear: myelemia exhibiting 30% of myeloid blasts. Bone marrow biopsy: panmyelosis showing 20% of myeloid blasts. Cytogenetic analysis by G-banding performed in peripheral blood verified the following karyotype: 46, XY, t(9;22;10)(q34;q11;q24)[20] The analysis of the BCR-ABL fusion gene according to standard protocols detected the presence of the b3a2 isoform. Fluorescence in situ hybridization (FISH) studies using dual color dual fusion probes in metaphases showed a signal pattern 1F2G1R. The fusion signal mapped to 10q24, the red signal to 9q34, and the normal green signal to chromosome 22, while a second low intensity green signal mapped to the Ph chromosome. No signal was observed in der(9). Interphase FISH analysis in nuclei (n=200) presented the same signal pattern. Instead of using whole chromosome probes for 9 and 22, we hybridised probes used to detect DiGiorge syndrome. These probes detect gene control ARSA (spectrum green) localized at 22q13 and Tuple1 at 22q11 (spectrum orange). Two signals, green and orange were identified in normal chromosome 22. Ph chromosome showed the orange signal, whereas the green signal mapped to der(10). Discussion. The localization of the hybrid BCR/ABL gene on chromosomes other than 22q is a rare event wich can only be detected by FISH techniques. When these unusual translocation occurs, the hypothesis most often put forward is that several consecutive chromosome rearrangements have taken place. In the present case the interpretation of karyotypes, FISH data and molecular evidence lead to the following hypothesis: Insertion of the BCR sequence from chromosome 22 to chromosome 9 may have ocurred, producing a BCR/ABL fusion in der(9). The Ph chromosome detected by G-banding showed a different green fluorescence intensity in the metaphase FISH signal pattern with BCR/ABL dual color dual fusion probes, as a result of an insertion on chromosome 9. This first event was followed by the translocation between the derivative 9 and chromosome 10, being the final localization of the BCR/ABL gene in 10q24. FISH analysis using a DiGeorge syndrome probe, supports the hypothesis of a multistep mechanism underlying insertion and translocations events in the present case. The relocation of BCR/ABL fusion sequence on sites other than chromosme 22q11 represent a rare type of variant Ph translocation. At least 21 cases described in the literature, showed fusion gene BCR/ABL located at 9q24. Only 12 patients with variant Ph were reported bearing BCR/ABL on a third chromosome. All of them involved a masked Ph chromosome. To our best knowledge this is the first report showing a variant Ph chromosome detected by G-banding in a CML patient due to a BCR insertion on ABL sequences and exhibiting the fusion signal in a third chromosome. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5184-5184
Author(s):  
Daniele Costa Abreu ◽  
Ana Paula Castilho, Bachelor ◽  
Vivian Dionísio Niewiadonski, Bachelor ◽  
Mauricio Drummond ◽  
Nelson Gaburo

Abstract Introduction In January 2013 was received in our lab service a bone marrow sample for cytogenetic analysis. The 61 years old female patient presents an elevated white blood cell count (118,000 x10³/mm³) and clinical diagnosis as Chronic Myeloid Leukemia (CML). According the medical information the treatment began with hydroxyurea 3g daily and allopurinol 300mg daily. Methods We proceeded with cytogenetic examination of the patient’s bone marrow aspirate by conventional G-banding analysis performed on unstimulated short-term cultures (24 hrs). FISH for BCR/ABL translocation was tested using a dual fusion dual color probe. Because of the sample stability we were unable to performed RT-PCR test. Results Chromosome analysis showed the translocation (9;22)(p24;q11.2) as a sole abnormality in 100% (20/20) of analyzed metaphases. Chronic myeloid leukemia presents as a specific chromosomal abnormality the Philadelphia chromosome, t(9;22)(q34;q11) which is different from the results obtained where the region of translocation of chromosome 9 was p24 instead of the classic q34. This result suggests it is BCR/JACK2 translocation. The FISH analysis showed the presence of a complex Ph chromosome: ABL con BCRx1 (one fusion) and BCRx2;ABLx2. Conclusion The patient took imatinib without answer. She is still in clinical monitoring with persistent hyperleucocytosis and the treatment is following with hydroxyurea 500mg daily and Interferon 5000 UI three times a week. Further molecular and cytogenetic tests will be performed in a second sample to contribute with evaluation of disease progression and monitoring treatment response. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document