Research on the Simulation of Cutting Rock Rotary by Hard Rock Tunnel Boring Machine Disc Cutters

2015 ◽  
Vol 51 (9) ◽  
pp. 199 ◽  
Author(s):  
Jianqin LIU
2018 ◽  
Vol 10 (1) ◽  
pp. 168781401875472 ◽  
Author(s):  
Wei Sun ◽  
Xiaobang Wang ◽  
Maolin Shi ◽  
Zhuqing Wang ◽  
Xueguan Song

A multidisciplinary design optimization model is developed in this article to optimize the performance of the hard rock tunnel boring machine using the collaborative optimization architecture. Tunnel boring machine is a complex engineering equipment with many subsystems coupled. In the established multidisciplinary design optimization process of this article, four subsystems are taken into account, which belong to different sub-disciplines/subsytems: the cutterhead system, the thrust system, the cutterhead driving system, and the economic model. The technology models of tunnel boring machine’s subsystems are build and the optimization objective of the multidisciplinary design optimization is to minimize the construction period from the system level of the hard rock tunnel boring machine. To further analyze the established multidisciplinary design optimization, the correlation between the design variables and the tunnel boring machine’s performance is also explored. Results indicate that the multidisciplinary design optimization process has significantly improved the performance of the tunnel boring machine. Based on the optimization results, another two excavating processes under different geological conditions are also optimized complementally using the collaborative optimization architecture, and the corresponding optimum performance of the hard rock tunnel boring machine, such as the cost and energy consumption, is compared and analysed. Results demonstrate that the proposed multidisciplinary design optimization method for tunnel boring machine is reliable and flexible while dealing with different geological conditions in practical engineering.


Author(s):  
Chengjun Shao ◽  
Jianfeng Liao ◽  
Xiuliang Li ◽  
Hongye Su

The cutterhead driving system of tunnel boring machine is one of the key components for rock cutting and excavation. In this paper, a generalized nonlinear time-varying dynamic model is established for the hard rock TBM cutterhead driving system. Parametric uncertainties and nonlinearities and unknown disturbances exist in the dynamic model. An adaptive robust control strategy is proposed to compensate the uncertainties and nonlinearities to achieve precise cutterhead rotation speed control. In order to simulate the comprehensive performances of adaptive robust control controller, three different kinds of external force disturbances are added in this model. Compared to the traditional PID, ARC can effectively handle the different kinds of external force disturbances with sufficient small tracking errors.


2013 ◽  
Vol 353-356 ◽  
pp. 1417-1421 ◽  
Author(s):  
Bin Shen ◽  
Yi Min Xia ◽  
Jian Jian Gu ◽  
Yan Chao Tian

According to the actual working condition of the full face hard rock tunnel boring machine (TBM), a 2-D discrete element model for breaking marble by two TBM disc cutters is established, it simulates the whole progress of cracks production and propagation under different confining stress and penetration; based on CSM prediction model, forces of two cutters and specific energy consumptions are calculated to determine the best penetration. The simulating result shows that there are three kinds of breaking modes of marble under different confining stress and penetration; As well as the trend that specific energy consumption decrease first and then increase with the penetration increases, and there is optimal penetration to make specific energy consumption the lowest each confining stress. The optimal penetration and the lowest specific energy consumption are determined when confining stress range from 0 to 40MPa according to the simulation results.


2013 ◽  
Vol 690-693 ◽  
pp. 2484-2489 ◽  
Author(s):  
Peng Zhou ◽  
Chao Wang ◽  
Wei Xian Gao ◽  
Yu Hou Wu

Rock tunnel boring machine is one of the main machineries and equipments for underground engineering, and the failure of tool systems is its main failure form. Rock hob test-bed is the only testing equipment for tool failure and wear. In this paper, the breaking rock by the double disc cutter is simulated and four kinds of rocks are selected to test the influece of rock characteristics and spacing between two disc cutters on the rock breaking by the double disc cutter test-bed. The results show that there is different optimal spacing between two disc cutters for different rock; the optimal spacing is inversely proportional to the hardness of the rocks; the maximum stress appears the boundary between the disc cutter and rock.


Sign in / Sign up

Export Citation Format

Share Document