underground engineering
Recently Published Documents


TOTAL DOCUMENTS

410
(FIVE YEARS 148)

H-INDEX

11
(FIVE YEARS 2)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Yanbo Zhang ◽  
Guangyu Gao ◽  
Shaohong Yan ◽  
Xulong Yao ◽  
Xiangxin Liu ◽  
...  

Meso-structure is an important factor affecting the characteristics of rock fracture. To determine the factors influencing the internal meso-structural characteristics upon the crack generation and extension, rock samples were tested under uniaxial cyclic loading and unloading and examined using computed tomography (CT) scanning. CT scanning was used to visualize and investigate the entire process of fracture source generation and its development in three dimensions, and finally the location information of the fracture source was determined. The mineral composition and structure along the fracture path inside the specimen were studied by using a polarizing microscope, and the evolution of fracture propagation around mineral particles was revealed based on its mineralogical characteristics. Results indicate that based on the fracture source around different rock meso-structure types, the initial fracture source can also be divided into different types, namely, the primary porosity type, the micro-crack type, and the mineral grain type. The strength characteristics of mineral grains can determine whether the crack extends around the gravel or through it. The hard grains at the crack-tip promote the transformation of tensile stress to shear stress, which lead to the change in the direction of crack extension and bifurcation. The spatial shape of the cracks after rock fracture is related to the initial distribution of minerals and is more complicated in areas where minerals are concentrated. The crack extension around gravel particles also generates a mode of failure, affecting large grains with gravel spalling from the matrix. The findings provide a study basis for identifying the potentially dangerous areas and provide early warning for the safety of underground engineering construction operations.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Lei Li ◽  
Ke Lei

When a traffic tunnel passes through special strata such as soft rock with high geo-stress, expansive rock, and fault fracture zones, the traditional supporting structure is often destroyed due to complicated loads, which threatens the construction and operation safety of tunnel engineering. Concrete-filled steel tubular (CFST) structure gives full play to the respective advantages of steel and concrete and has better bearing capacity and economic benefits than traditional support structure, which has achieved good results in some underground engineering applications. In order to promote the application of CFST in the construction of traffic tunnels with complex geological conditions and improve the bearing capacity of the initial supporting structure of tunnels, the influencing factors of the bearing capacity of CFST arch were studied by numerical simulation. The main achievements are as follows: (1) The load-displacement curves of CFST members under different material parameters are basically consistent. CFST members have significant restrictions on displacement in the elastic stage and have high ultimate bearing capacity. Although the bearing capacity decreases obviously after reaching the peak, it shows good extension performance. (2) The height of the steel tube section, the thickness of the steel tube wall and the grade of the core concrete have an approximately linear positive correlation with the bearing capacity of CFST arch, but the influence of these three factors on the bearing capacity of CFST arch decreases in turn, and when the grade of core concrete increases above C50, it has no significant effect on the bearing capacity of members.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Yujie Feng ◽  
Haijian Su ◽  
Yinjiang Nie ◽  
Honghui Zhao

Marble is a common rock used in many buildings for structural or ornamental purposes and is widely distributed in underground engineering projects. The rocks are exposed to high temperatures when a tunnel fire occurs, and they will be rapidly cooled during the rescue process, which has a great impact on the rock performance and the underground engineering stability. Therefore, the role of cyclic thermal shocks on the physical and mechanical properties of marble specimens was systematically investigated. Different cyclic thermal shock treatments (T = 25, 200, 400, 600, 800 °C; N = 1, 3, 5, 7, 9) were applied to marble specimens and the changes in mass, volume, density and P-wave velocity were recorded in turn. Then, the thermal conductivity, optical microscopy and uniaxial compression tests were carried out. The results showed that both the cyclic thermal shock numbers (N) and the temperature level (T) weaken the rock properties. When the temperature of a thermal shock exceeds 600 °C, the mass loss coefficient and porosity of the marble will increase significantly. The most noticeable change in P-wave velocity occurs between 200 and 400 °C, with a 52.98% attenuation. After three thermal shocks, the cyclic thermal shock numbers have little influence on the uniaxial compressive strength and Young’s modulus of marble specimens. Shear failure is the principal failure mode in marble specimens that have experienced severe thermal damage (high N or T). The optical microscopic pictures are beneficial for illustrating the thermal cracking mechanism of marble specimens after cyclic thermal shocks.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012021
Author(s):  
Jiangchun Hu ◽  
He Feng ◽  
Luge Sun ◽  
Zhipeng Liu ◽  
Qin Wang

Abstract The rise of the underground engineering provides more guarantee and convenience for human life, and the mechanical property of the surrounding rock is gradually lost, which has great harm to the long-term stability of the project. in that context of the environmental background of the project under the base of this article, firstly, a sandstone sample is taken at the site, a test sample of suitable size is made in the chamber, and then the test sample is arranged in a special device to simulate the simulated corrosion in the background of the simulation environment, Finally, the mechanical properties and apparent morphology of rock samples under different corrosion conditions were studied. The results show that the loss of the mechanical properties of the rock under different corrosion conditions is large, and the change of the acid and alkali of the solution is larger and the rock is The more obvious the damage difference of mechanical properties is, the more obvious the difference is that the pH value is from low to high, the peak strength loses 52%, 27.7%, 7%, 23%, 54% respectively. The failure morphology of corroded sandstone shows special conical morphology. Finally, the equivalent strain principle is used to interpret the corrosion of sandstone. The research results can be used for reference and reference for the long-term stability control of underground engineering based on water corrosion environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sibin Chen ◽  
Hao Jiang ◽  
Huitang Xing ◽  
Jing Wang ◽  
Yongliang Huang ◽  
...  

With the rapid development of rail transit in China, the number and scale of underground engineering construction have increased significantly, and a large amount of shield muck has been generated, which has brought great challenges to the urban environment. The reuse of shield muck has become an important research direction in underground engineering construction. In this paper, a nonsintered brick is prepared with shield muck soil as the matrix. The influence of different doping amounts of lime, fly ash, cement, and polyvinyl alcohol on porosity, density, water absorption, saturation coefficient, compressive strength, and other properties was explored to realize the resource utilization of shield dregs and at the same time obtain excellent performance nonsintered bricks. Through research, it is found that when the lime doping amount is 10% and the cement doping amount is 5%, with the increase of the fly ash doping amount, the overall compressive strength increases significantly, and the maximum compressive strength can reach 13.69 MPa. Although the doping of trace amounts of polyvinyl alcohol reduces the compressive strength, it can significantly reduce the compressive strength and mass loss rate after 15 freeze-thaw cycles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qiankuan Wang ◽  
Shili Qiu ◽  
Yao Cheng ◽  
Ping Li ◽  
Yongyuan Kou ◽  
...  

In burst-prone deep underground engineering, seismic waves generated from a near-field ground motion event may play a critical role in causing localized rockburst damage. Accurate estimation of near-field ground motions around excavations is important for seismic hazard risk assessment and dynamic rock support design in underground engineering. During the excavation of an underground cavern, stress redistribution in the surrounding rock leads to the formation of damage zones, including the excavation damage zone (EDZ) and excavation fracture zone (EFZ). The poor properties of the rock in the damage zones cause the wave velocities of the rock mass to decrease and the dynamic wave interaction to change, thereby affecting the ground motions around the excavation. This paper studies the near-field ground motion behavior and reveals the control effect of the seismic wave velocity in the damage zones on the near-field ground motions by the aid of the finite fracturing source model (FFSSM). The research results provide a new knowledge of the influence of excavation disturbance on the ground motion distribution around the excavation, and provide new ideas for the seismic hazard risk assessment and prevention in underground engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dengping Hu ◽  
Chunyan Wang ◽  
Zhe Luo ◽  
Xuanxuan Chu

Polymer grouting is carried out between the steel panel and surrounding soil in underground engineering, and the polymer material consists of isocyanates and polyols. The isocyanate/polyol composite slurry expands rapidly due to chemical reaction and solidifies immediately. Then, a dense impermeable polymer layer is formed after rapid expansion of isocyanate and polyol, which is widely used for ground reinforcement and foundation remediation. Thus, a steel panel-polymer composite structure is developed. Mechanical properties of the steel panel-polymer structure are studied. The results show that the steel panel-polymer structure exhibited excellent mechanical properties. The steel panel and polymer layer should be designed above 3 mm and 10 mm in thickness, respectively. The steel panel showed superior mechanical properties to those of polymer layers. Considering good rigidity of the steel panel and good flexibility of the polymer layer, the steel panel and polymer layer presented perfect interfacial contact. It is concluded that the mechanical properties of the whole structure were increasingly enhanced with the increase of the steel panel thickness and the structural flexibility increased with the thickness of the polymer layer. Besides, the combination of the steel panel and polymer layer could also improve the mechanical properties of this coupling structure. This study provided an initial attempt for investigating the feasibility of applying polyurethane foam to steel panels in underground engineering. The stress analysis along the grouting direction inside the prefabricated wall was conducted. It may lay the foundation for further application of polymer grouting in underground engineering.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2215
Author(s):  
Yingji Bao ◽  
Binsong Jiang

Before the excavation of underground engineering, joints, fissures, and voids already exist in the rock—that is, there are defects in the rock. Due to the existence of these defects, the rock produces plastic deformation, which can lead to incompatible deformation. Therefore, the classic continuum theory cannot accurately describe the deformation of the rock. In this paper, a relationship between the strain tensor and metric tensor was studied by analyzing the three states of elastic plastic deformation, and the elasto-plastic incompatible model was built. Additionally, the stress and deformation of a thick-walled cylinder under hydrostatic pressure was investigated by using a finite element program written in the FORTRAN language. The results show that the plastic strain is associated with not only deviator stress but also the distribution of defects (represented by the incompatible parameter R). With the value of R increasing, the defects in the rock increased, but the elastic plastic stiffness matrix decreased. Thus, as more rock enters the plastic state, the deformation of the surrounding rock is enlarged.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yunchao Tao

The complex engineering geological conditions and the surrounding environmental conditions of the existing subway lines and adjacent buildings have significantly deepened the difficulty of metro station foundation pit design and construction. Based on the foundation pit project of Luboyuan Station of Nanjing Metro Line 9, this study chooses a reasonable foundation pit support design scheme to carry out related research by analyzing the site geological environmental conditions. Through the analysis and evaluation of the engineering geological conditions of the engineering site, the engineering geological problems that may occur in the process of construction are given. According to the lithologic characteristics of the site strata, the hydrogeological conditions, and the features of the underground engineering structure, the design of the foundation pit supporting system is optimized and analyzed. The results show that making full use of the geological features of strata and adopting effective support methods can ensure the safety of foundation pit construction, reduce the cost of engineering description, and shorten the construction period, which can be used as a reference for similar projects and construction.


Sign in / Sign up

Export Citation Format

Share Document